Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD | |
| Assertion | hlnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD | |
| 2 | hlnv | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec ) | |
| 3 | 1 2 | ax-mp | ⊢ 𝑈 ∈ NrmCVec |