Metamath Proof Explorer


Theorem hlnvi

Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hlnvi.1 𝑈 ∈ CHilOLD
Assertion hlnvi 𝑈 ∈ NrmCVec

Proof

Step Hyp Ref Expression
1 hlnvi.1 𝑈 ∈ CHilOLD
2 hlnv ( 𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec )
3 1 2 ax-mp 𝑈 ∈ NrmCVec