Metamath Proof Explorer


Theorem hlobn

Description: Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hlobn ( 𝑈 ∈ CHilOLD𝑈 ∈ CBan )

Proof

Step Hyp Ref Expression
1 ishlo ( 𝑈 ∈ CHilOLD ↔ ( 𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD ) )
2 1 simplbi ( 𝑈 ∈ CHilOLD𝑈 ∈ CBan )