Metamath Proof Explorer


Theorem hlomcmat

Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion hlomcmat ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) )

Proof

Step Hyp Ref Expression
1 hloml ( 𝐾 ∈ HL → 𝐾 ∈ OML )
2 hlclat ( 𝐾 ∈ HL → 𝐾 ∈ CLat )
3 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
4 1 2 3 3jca ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) )