Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
2 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
8 |
1 2 3 4 5 6 7
|
ishlat1 |
⊢ ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝐾 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝐾 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ∃ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝐾 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) ) ) ) |
9 |
8
|
simplbi |
⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ) |