Metamath Proof Explorer


Theorem hlomcmcv

Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion hlomcmcv ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
2 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
3 eqid ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 )
4 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
5 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
6 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
7 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
8 1 2 3 4 5 6 7 ishlat1 ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝐾 ) ( 𝑥𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝐾 ) ( 𝑧𝑥𝑧𝑦𝑧 ( le ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ∃ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑥𝑥 ( lt ‘ 𝐾 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝐾 ) 𝑧𝑧 ( lt ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) ) ) )
9 8 simplbi ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) )