Step |
Hyp |
Ref |
Expression |
1 |
|
hlpar.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
hlpar.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
hlpar.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
hlpar.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
5 |
|
hlph |
⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD ) |
6 |
1 2 3 4
|
phpar |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
7 |
5 6
|
syl3an1 |
⊢ ( ( 𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |