Metamath Proof Explorer


Theorem hlpar

Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlpar.1 𝑋 = ( BaseSet ‘ 𝑈 )
hlpar.2 𝐺 = ( +𝑣𝑈 )
hlpar.4 𝑆 = ( ·𝑠OLD𝑈 )
hlpar.6 𝑁 = ( normCV𝑈 )
Assertion hlpar ( ( 𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁𝐴 ) ↑ 2 ) + ( ( 𝑁𝐵 ) ↑ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 hlpar.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hlpar.2 𝐺 = ( +𝑣𝑈 )
3 hlpar.4 𝑆 = ( ·𝑠OLD𝑈 )
4 hlpar.6 𝑁 = ( normCV𝑈 )
5 hlph ( 𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD )
6 1 2 3 4 phpar ( ( 𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁𝐴 ) ↑ 2 ) + ( ( 𝑁𝐵 ) ↑ 2 ) ) ) )
7 5 6 syl3an1 ( ( 𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁𝐴 ) ↑ 2 ) + ( ( 𝑁𝐵 ) ↑ 2 ) ) ) )