Metamath Proof Explorer


Theorem hlpar2

Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlpar2.1 𝑋 = ( BaseSet ‘ 𝑈 )
hlpar2.2 𝐺 = ( +𝑣𝑈 )
hlpar2.3 𝑀 = ( −𝑣𝑈 )
hlpar2.6 𝑁 = ( normCV𝑈 )
Assertion hlpar2 ( ( 𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁𝐴 ) ↑ 2 ) + ( ( 𝑁𝐵 ) ↑ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 hlpar2.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 hlpar2.2 𝐺 = ( +𝑣𝑈 )
3 hlpar2.3 𝑀 = ( −𝑣𝑈 )
4 hlpar2.6 𝑁 = ( normCV𝑈 )
5 hlph ( 𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD )
6 1 2 3 4 phpar2 ( ( 𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁𝐴 ) ↑ 2 ) + ( ( 𝑁𝐵 ) ↑ 2 ) ) ) )
7 5 6 syl3an1 ( ( 𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁𝐴 ) ↑ 2 ) + ( ( 𝑁𝐵 ) ↑ 2 ) ) ) )