Step |
Hyp |
Ref |
Expression |
1 |
|
hlpasch.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hlpasch.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
hlpasch.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
4 |
|
hlpasch.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
hlpasch.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
hlpasch.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
hlpasch.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
hlpasch.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
9 |
|
hlpasch.5 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
10 |
|
hlpasch.6 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
11 |
|
hlpasch.7 |
⊢ ( 𝜑 → 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐷 ) |
12 |
|
hlpasch.8 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 𝐼 𝐶 ) ) |
13 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐺 ∈ TarskiG ) |
15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐷 ∈ 𝑃 ) |
16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝑋 ∈ 𝑃 ) |
17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐶 ∈ 𝑃 ) |
18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐵 ∈ 𝑃 ) |
19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐴 ∈ 𝑃 ) |
20 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) |
22 |
1 20 2 14 18 17 15 21
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) ) |
23 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐴 ∈ ( 𝑋 𝐼 𝐶 ) ) |
24 |
1 2 13 14 15 16 17 18 19 22 23
|
outpasch |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) |
25 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝑒 ∈ 𝑃 ) |
26 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝐵 ∈ 𝑃 ) |
27 |
19
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝐴 ∈ 𝑃 ) |
28 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝐺 ∈ TarskiG ) |
29 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) |
30 |
1 20 2 28 26 27 25 29
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝐴 ∈ ( 𝑒 𝐼 𝐵 ) ) |
31 |
28
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
32 |
26
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
33 |
27
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
34 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) |
35 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝑒 = 𝐵 ) |
36 |
35
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → ( 𝐵 𝐼 𝑒 ) = ( 𝐵 𝐼 𝐵 ) ) |
37 |
34 36
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐼 𝐵 ) ) |
38 |
1 20 2 31 32 33 37
|
axtgbtwnid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐵 = 𝐴 ) |
39 |
38
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐴 = 𝐵 ) |
40 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝐴 ≠ 𝐵 ) |
41 |
40
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐴 ≠ 𝐵 ) |
42 |
41
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) ∧ 𝑒 = 𝐵 ) → ¬ 𝐴 = 𝐵 ) |
43 |
39 42
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → ¬ 𝑒 = 𝐵 ) |
44 |
43
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝑒 ≠ 𝐵 ) |
45 |
1 2 3 25 26 27 28 27 30 44 40
|
btwnhl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ) |
46 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝐷 ∈ 𝑃 ) |
47 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝑋 ∈ 𝑃 ) |
48 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) |
49 |
1 20 2 28 46 25 47 48
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) |
50 |
45 49
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
51 |
50
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) → ( ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) ) |
52 |
51
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → ( ∃ 𝑒 ∈ 𝑃 ( 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ∧ 𝐴 ∈ ( 𝐵 𝐼 𝑒 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) ) |
53 |
24 52
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
54 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → 𝐷 ∈ 𝑃 ) |
55 |
54
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐷 ∈ 𝑃 ) |
56 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) ∧ 𝑒 = 𝐷 ) → 𝑒 = 𝐷 ) |
57 |
56
|
breq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) ∧ 𝑒 = 𝐷 ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ↔ 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ) ) |
58 |
56
|
eleq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) ∧ 𝑒 = 𝐷 ) → ( 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ↔ 𝐷 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
59 |
57 58
|
anbi12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) ∧ 𝑒 = 𝐷 ) → ( ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ↔ ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ∧ 𝐷 ∈ ( 𝑋 𝐼 𝐷 ) ) ) ) |
60 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → 𝐴 ∈ 𝑃 ) |
61 |
60
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
62 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → 𝐵 ∈ 𝑃 ) |
63 |
62
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
64 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → 𝐺 ∈ TarskiG ) |
65 |
64
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
66 |
1 2 3 7 9 6 4 11
|
hlcomd |
⊢ ( 𝜑 → 𝐷 ( 𝐾 ‘ 𝐵 ) 𝐶 ) |
67 |
66
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐷 ( 𝐾 ‘ 𝐵 ) 𝐶 ) |
68 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
69 |
68
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐶 ∈ 𝑃 ) |
70 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐴 ∈ ( 𝑋 𝐼 𝐶 ) ) |
71 |
70
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐴 ∈ ( 𝑋 𝐼 𝐶 ) ) |
72 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝑋 = 𝐵 ) |
73 |
72
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → ( 𝑋 𝐼 𝐶 ) = ( 𝐵 𝐼 𝐶 ) ) |
74 |
71 73
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) |
75 |
1 2 3 7 9 6 4
|
ishlg |
⊢ ( 𝜑 → ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐷 ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) ) |
76 |
11 75
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) |
77 |
76
|
simp1d |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
78 |
77
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐶 ≠ 𝐵 ) |
79 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → 𝐴 ≠ 𝐵 ) |
80 |
79
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐴 ≠ 𝐵 ) |
81 |
1 2 3 55 69 63 65 61 74 78 80
|
hlbtwn |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → ( 𝐷 ( 𝐾 ‘ 𝐵 ) 𝐶 ↔ 𝐷 ( 𝐾 ‘ 𝐵 ) 𝐴 ) ) |
82 |
67 81
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐷 ( 𝐾 ‘ 𝐵 ) 𝐴 ) |
83 |
1 2 3 55 61 63 65 82
|
hlcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ) |
84 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → 𝑋 ∈ 𝑃 ) |
85 |
84
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝑋 ∈ 𝑃 ) |
86 |
1 20 2 65 85 55
|
tgbtwntriv2 |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → 𝐷 ∈ ( 𝑋 𝐼 𝐷 ) ) |
87 |
83 86
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ∧ 𝐷 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
88 |
55 59 87
|
rspcedvd |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 = 𝐵 ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
89 |
84
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) → 𝑋 ∈ 𝑃 ) |
90 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 = 𝑋 ) → 𝑒 = 𝑋 ) |
91 |
90
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 = 𝑋 ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ↔ 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) |
92 |
90
|
eleq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 = 𝑋 ) → ( 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ↔ 𝑋 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
93 |
91 92
|
anbi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 = 𝑋 ) → ( ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ↔ ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ∧ 𝑋 ∈ ( 𝑋 𝐼 𝐷 ) ) ) ) |
94 |
93
|
ad4ant14 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ∧ 𝑒 = 𝑋 ) → ( ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ↔ ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ∧ 𝑋 ∈ ( 𝑋 𝐼 𝐷 ) ) ) ) |
95 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) → 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) |
96 |
1 20 2 64 84 54
|
tgbtwntriv1 |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → 𝑋 ∈ ( 𝑋 𝐼 𝐷 ) ) |
97 |
96
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) → 𝑋 ∈ ( 𝑋 𝐼 𝐷 ) ) |
98 |
95 97
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ∧ 𝑋 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
99 |
89 94 98
|
rspcedvd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
100 |
54
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐷 ∈ 𝑃 ) |
101 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) ∧ 𝑒 = 𝐷 ) → 𝑒 = 𝐷 ) |
102 |
101
|
breq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) ∧ 𝑒 = 𝐷 ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ↔ 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ) ) |
103 |
101
|
eleq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) ∧ 𝑒 = 𝐷 ) → ( 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ↔ 𝐷 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
104 |
102 103
|
anbi12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) ∧ 𝑒 = 𝐷 ) → ( ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ↔ ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ∧ 𝐷 ∈ ( 𝑋 𝐼 𝐷 ) ) ) ) |
105 |
79
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐴 ≠ 𝐵 ) |
106 |
1 2 3 7 9 6 4 11
|
hlne2 |
⊢ ( 𝜑 → 𝐷 ≠ 𝐵 ) |
107 |
106
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐷 ≠ 𝐵 ) |
108 |
64
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
109 |
62
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
110 |
60
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
111 |
68
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐶 ∈ 𝑃 ) |
112 |
111
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
113 |
84
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝑋 ∈ 𝑃 ) |
114 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) |
115 |
70
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐴 ∈ ( 𝑋 𝐼 𝐶 ) ) |
116 |
115
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐴 ∈ ( 𝑋 𝐼 𝐶 ) ) |
117 |
1 20 2 108 113 109 110 112 114 116
|
tgbtwnexch3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) |
118 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) |
119 |
1 2 108 109 110 100 112 117 118
|
tgbtwnconn3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → ( 𝐴 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐴 ) ) ) |
120 |
1 2 3 5 9 6 4
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ↔ ( 𝐴 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐴 ) ) ) ) ) |
121 |
120
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ↔ ( 𝐴 ≠ 𝐵 ∧ 𝐷 ≠ 𝐵 ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐴 ) ) ) ) ) |
122 |
105 107 119 121
|
mpbir3and |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ) |
123 |
1 20 2 108 113 100
|
tgbtwntriv2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝑋 𝐼 𝐷 ) ) |
124 |
122 123
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ∧ 𝐷 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
125 |
100 104 124
|
rspcedvd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
126 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝑋 ∈ 𝑃 ) |
127 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
128 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
129 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
130 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝑋 ≠ 𝐵 ) |
131 |
130
|
neneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ¬ 𝑋 = 𝐵 ) |
132 |
64
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
133 |
132
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
134 |
126
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 = 𝐶 ) → 𝑋 ∈ 𝑃 ) |
135 |
128
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 = 𝐶 ) → 𝐴 ∈ 𝑃 ) |
136 |
115
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 = 𝐶 ) → 𝐴 ∈ ( 𝑋 𝐼 𝐶 ) ) |
137 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 = 𝐶 ) → 𝑋 = 𝐶 ) |
138 |
137
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 = 𝐶 ) → ( 𝑋 𝐼 𝑋 ) = ( 𝑋 𝐼 𝐶 ) ) |
139 |
136 138
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 = 𝐶 ) → 𝐴 ∈ ( 𝑋 𝐼 𝑋 ) ) |
140 |
1 20 2 133 134 135 139
|
axtgbtwnid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 = 𝐶 ) → 𝑋 = 𝐴 ) |
141 |
140
|
olcd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 = 𝐶 ) → ( 𝐵 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 ) ∨ 𝑋 = 𝐴 ) ) |
142 |
132
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
143 |
127
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
144 |
111
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
145 |
126
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → 𝑋 ∈ 𝑃 ) |
146 |
128
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
147 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → 𝑋 ≠ 𝐶 ) |
148 |
147
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → 𝐶 ≠ 𝑋 ) |
149 |
148
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → ¬ 𝐶 = 𝑋 ) |
150 |
54
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐷 ∈ 𝑃 ) |
151 |
106
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐷 ≠ 𝐵 ) |
152 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) |
153 |
1 2 13 132 150 127 126 151 152
|
lncom |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝑋 ∈ ( 𝐷 ( LineG ‘ 𝐺 ) 𝐵 ) ) |
154 |
77
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
155 |
154
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐵 ≠ 𝐶 ) |
156 |
66
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐷 ( 𝐾 ‘ 𝐵 ) 𝐶 ) |
157 |
1 2 3 150 111 127 132 13 156
|
hlln |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐷 ∈ ( 𝐶 ( LineG ‘ 𝐺 ) 𝐵 ) ) |
158 |
1 2 13 132 127 111 150 155 157
|
lncom |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐷 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐶 ) ) |
159 |
158
|
orcd |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝐷 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |
160 |
1 2 13 132 126 150 127 111 153 159
|
coltr |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |
161 |
1 13 2 132 127 111 126 160
|
colrot1 |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝐵 ∈ ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 ) ∨ 𝐶 = 𝑋 ) ) |
162 |
161
|
orcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝐶 = 𝑋 ∨ 𝐵 ∈ ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 ) ) ) |
163 |
162
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → ( 𝐶 = 𝑋 ∨ 𝐵 ∈ ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 ) ) ) |
164 |
163
|
ord |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → ( ¬ 𝐶 = 𝑋 → 𝐵 ∈ ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 ) ) ) |
165 |
149 164
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 ) ) |
166 |
1 13 2 132 126 128 111 115
|
btwncolg3 |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝐶 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 ) ∨ 𝑋 = 𝐴 ) ) |
167 |
166
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → ( 𝐶 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 ) ∨ 𝑋 = 𝐴 ) ) |
168 |
1 2 13 142 143 144 145 146 165 167
|
coltr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) → ( 𝐵 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 ) ∨ 𝑋 = 𝐴 ) ) |
169 |
141 168
|
pm2.61dane |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝐵 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 ) ∨ 𝑋 = 𝐴 ) ) |
170 |
1 13 2 132 126 128 127 169
|
colrot2 |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝐴 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝑋 ) ∨ 𝐵 = 𝑋 ) ) |
171 |
1 13 2 132 127 126 128 170
|
colcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝐴 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 ) ∨ 𝑋 = 𝐵 ) ) |
172 |
171
|
orcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝑋 = 𝐵 ∨ 𝐴 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 ) ) ) |
173 |
172
|
ord |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( ¬ 𝑋 = 𝐵 → 𝐴 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 ) ) ) |
174 |
131 173
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → 𝐴 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 ) ) |
175 |
1 2 3 126 127 128 129 128 13 174
|
lnhl |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ∨ 𝐵 ∈ ( 𝑋 𝐼 𝐴 ) ) ) |
176 |
99 125 175
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑋 ≠ 𝐵 ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
177 |
88 176
|
pm2.61dane |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
178 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
179 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝑋 ∈ 𝑃 ) |
180 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
181 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
182 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐷 ∈ 𝑃 ) |
183 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) |
184 |
1 20 2 178 179 180 68 181 182 70 183
|
axtgpasch |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) |
185 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) |
186 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝑒 ∈ 𝑃 ) |
187 |
181
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝐴 ∈ 𝑃 ) |
188 |
180
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝐵 ∈ 𝑃 ) |
189 |
178
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝐺 ∈ TarskiG ) |
190 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ) |
191 |
1 20 2 189 187 186 188 190
|
tgbtwncom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝑒 ∈ ( 𝐵 𝐼 𝐴 ) ) |
192 |
10
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
193 |
192
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝐵 ≠ 𝐴 ) |
194 |
189
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
195 |
9
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐷 ∈ 𝑃 ) |
196 |
8
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝑋 ∈ 𝑃 ) |
197 |
188
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
198 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) |
199 |
106
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐷 ) |
200 |
199
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐵 ≠ 𝐷 ) |
201 |
200
|
neneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → ¬ 𝐵 = 𝐷 ) |
202 |
|
ioran |
⊢ ( ¬ ( 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ∨ 𝐵 = 𝐷 ) ↔ ( ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ∧ ¬ 𝐵 = 𝐷 ) ) |
203 |
198 201 202
|
sylanbrc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → ¬ ( 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ∨ 𝐵 = 𝐷 ) ) |
204 |
1 13 2 194 197 195 196 203
|
ncolrot2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → ¬ ( 𝐷 ∈ ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 ) ∨ 𝑋 = 𝐵 ) ) |
205 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝑒 = 𝐵 ) |
206 |
186
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝑒 ∈ 𝑃 ) |
207 |
1 2 13 194 195 196 197 204
|
ncolne1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐷 ≠ 𝑋 ) |
208 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) |
209 |
1 2 13 194 195 196 206 207 208
|
btwnlng1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝑒 ∈ ( 𝐷 ( LineG ‘ 𝐺 ) 𝑋 ) ) |
210 |
205 209
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐵 ∈ ( 𝐷 ( LineG ‘ 𝐺 ) 𝑋 ) ) |
211 |
1 2 13 194 195 196 207
|
tglinerflx1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐷 ∈ ( 𝐷 ( LineG ‘ 𝐺 ) 𝑋 ) ) |
212 |
106
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐷 ≠ 𝐵 ) |
213 |
212
|
necomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐵 ≠ 𝐷 ) |
214 |
1 2 13 194 197 195 213
|
tglinerflx1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐵 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) |
215 |
1 2 13 194 197 195 213
|
tglinerflx2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐷 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) |
216 |
1 2 13 194 195 196 197 195 204 210 211 214 215
|
tglineinteq |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) ∧ 𝑒 = 𝐵 ) → 𝐵 = 𝐷 ) |
217 |
216 201
|
pm2.65da |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → ¬ 𝑒 = 𝐵 ) |
218 |
217
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝑒 ≠ 𝐵 ) |
219 |
1 2 3 188 187 186 189 187 191 193 218
|
btwnhl1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝑒 ( 𝐾 ‘ 𝐵 ) 𝐴 ) |
220 |
1 2 3 186 187 188 189 219
|
hlcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ) |
221 |
178
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) → 𝐺 ∈ TarskiG ) |
222 |
182
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) → 𝐷 ∈ 𝑃 ) |
223 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) → 𝑒 ∈ 𝑃 ) |
224 |
179
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) → 𝑋 ∈ 𝑃 ) |
225 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) → 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) |
226 |
1 20 2 221 222 223 224 225
|
tgbtwncom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) → 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) |
227 |
226
|
adantrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) |
228 |
220 227
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
229 |
228
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) ∧ 𝑒 ∈ 𝑃 ) → ( ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) → ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) ) |
230 |
229
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → ( ∃ 𝑒 ∈ 𝑃 ( 𝑒 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑒 ∈ ( 𝐷 𝐼 𝑋 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) ) |
231 |
185 230
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ∧ ¬ 𝑋 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
232 |
177 231
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |
233 |
76
|
simp3d |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ) |
234 |
53 232 233
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ∧ 𝑒 ∈ ( 𝑋 𝐼 𝐷 ) ) ) |