Metamath Proof Explorer


Theorem hlprlem

Description: Lemma for hlpr . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses hlress.f 𝐹 = ( Scalar ‘ 𝑊 )
hlress.k 𝐾 = ( Base ‘ 𝐹 )
Assertion hlprlem ( 𝑊 ∈ ℂHil → ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝐾 ) ∈ DivRing ∧ ( ℂflds 𝐾 ) ∈ CMetSp ) )

Proof

Step Hyp Ref Expression
1 hlress.f 𝐹 = ( Scalar ‘ 𝑊 )
2 hlress.k 𝐾 = ( Base ‘ 𝐹 )
3 hlcph ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil )
4 1 2 cphsubrg ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
5 3 4 syl ( 𝑊 ∈ ℂHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
6 1 2 cphsca ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂflds 𝐾 ) )
7 3 6 syl ( 𝑊 ∈ ℂHil → 𝐹 = ( ℂflds 𝐾 ) )
8 cphlvec ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec )
9 1 lvecdrng ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing )
10 3 8 9 3syl ( 𝑊 ∈ ℂHil → 𝐹 ∈ DivRing )
11 7 10 eqeltrrd ( 𝑊 ∈ ℂHil → ( ℂflds 𝐾 ) ∈ DivRing )
12 hlbn ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban )
13 1 bnsca ( 𝑊 ∈ Ban → 𝐹 ∈ CMetSp )
14 12 13 syl ( 𝑊 ∈ ℂHil → 𝐹 ∈ CMetSp )
15 7 14 eqeltrrd ( 𝑊 ∈ ℂHil → ( ℂflds 𝐾 ) ∈ CMetSp )
16 5 11 15 3jca ( 𝑊 ∈ ℂHil → ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝐾 ) ∈ DivRing ∧ ( ℂflds 𝐾 ) ∈ CMetSp ) )