Step |
Hyp |
Ref |
Expression |
1 |
|
hlress.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
hlress.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
hlcph |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) |
4 |
1 2
|
cphsubrg |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑊 ∈ ℂHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
6 |
1 2
|
cphsca |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
7 |
3 6
|
syl |
⊢ ( 𝑊 ∈ ℂHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
8 |
|
cphlvec |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec ) |
9 |
1
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
10 |
3 8 9
|
3syl |
⊢ ( 𝑊 ∈ ℂHil → 𝐹 ∈ DivRing ) |
11 |
7 10
|
eqeltrrd |
⊢ ( 𝑊 ∈ ℂHil → ( ℂfld ↾s 𝐾 ) ∈ DivRing ) |
12 |
|
hlbn |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) |
13 |
1
|
bnsca |
⊢ ( 𝑊 ∈ Ban → 𝐹 ∈ CMetSp ) |
14 |
12 13
|
syl |
⊢ ( 𝑊 ∈ ℂHil → 𝐹 ∈ CMetSp ) |
15 |
7 14
|
eqeltrrd |
⊢ ( 𝑊 ∈ ℂHil → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
16 |
5 11 15
|
3jca |
⊢ ( 𝑊 ∈ ℂHil → ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ∧ ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) ) |