Metamath Proof Explorer


Theorem hlrel

Description: The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007) (New usage is discouraged.)

Ref Expression
Assertion hlrel Rel CHilOLD

Proof

Step Hyp Ref Expression
1 hlobn ( 𝑥 ∈ CHilOLD𝑥 ∈ CBan )
2 1 ssriv CHilOLD ⊆ CBan
3 bnrel Rel CBan
4 relss ( CHilOLD ⊆ CBan → ( Rel CBan → Rel CHilOLD ) )
5 2 3 4 mp2 Rel CHilOLD