| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hlrelat5.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							hlrelat5.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							hlrelat5.s | 
							⊢  <   =  ( lt ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							hlrelat5.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							hlrelat5.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								1 2 3 5
							 | 
							hlrelat1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  →  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							imp | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpll1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  𝐾  ∈  HL )  | 
						
						
							| 9 | 
							
								8
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  𝐾  ∈  Lat )  | 
						
						
							| 10 | 
							
								
							 | 
							simpll2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								1 5
							 | 
							atbase | 
							⊢ ( 𝑝  ∈  𝐴  →  𝑝  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								1 2 3 4
							 | 
							latnle | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( ¬  𝑝  ≤  𝑋  ↔  𝑋  <  ( 𝑋  ∨  𝑝 ) ) )  | 
						
						
							| 14 | 
							
								9 10 12 13
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  ( ¬  𝑝  ≤  𝑋  ↔  𝑋  <  ( 𝑋  ∨  𝑝 ) ) )  | 
						
						
							| 15 | 
							
								2 3
							 | 
							pltle | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  →  𝑋  ≤  𝑌 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							imp | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  𝑋  ≤  𝑌 )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  𝑋  ≤  𝑌 )  | 
						
						
							| 18 | 
							
								17
							 | 
							biantrurd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  ( 𝑝  ≤  𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll3 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								1 2 4
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  ≤  𝑌  ∧  𝑝  ≤  𝑌 )  ↔  ( 𝑋  ∨  𝑝 )  ≤  𝑌 ) )  | 
						
						
							| 21 | 
							
								9 10 12 19 20
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  ( ( 𝑋  ≤  𝑌  ∧  𝑝  ≤  𝑌 )  ↔  ( 𝑋  ∨  𝑝 )  ≤  𝑌 ) )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							bitrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  ( 𝑝  ≤  𝑌  ↔  ( 𝑋  ∨  𝑝 )  ≤  𝑌 ) )  | 
						
						
							| 23 | 
							
								14 22
							 | 
							anbi12d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴 )  →  ( ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ↔  ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ∧  ( 𝑋  ∨  𝑝 )  ≤  𝑌 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							rexbidva | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ( ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ↔  ∃ 𝑝  ∈  𝐴 ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ∧  ( 𝑋  ∨  𝑝 )  ≤  𝑌 ) ) )  | 
						
						
							| 25 | 
							
								7 24
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ∃ 𝑝  ∈  𝐴 ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ∧  ( 𝑋  ∨  𝑝 )  ≤  𝑌 ) )  |