Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Hilbert lattices
hlrelat1
Metamath Proof Explorer
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of
MaedaMaeda p. 30. ( chpssati , with /\ swapped, analog.)
(Contributed by NM , 4-Dec-2011)
Ref
Expression
Hypotheses
hlrelat1.b
⊢ 𝐵 = ( Base ‘ 𝐾 )
hlrelat1.l
⊢ ≤ = ( le ‘ 𝐾 )
hlrelat1.s
⊢ < = ( lt ‘ 𝐾 )
hlrelat1.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
Assertion
hlrelat1
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) )
Proof
Step
Hyp
Ref
Expression
1
hlrelat1.b
⊢ 𝐵 = ( Base ‘ 𝐾 )
2
hlrelat1.l
⊢ ≤ = ( le ‘ 𝐾 )
3
hlrelat1.s
⊢ < = ( lt ‘ 𝐾 )
4
hlrelat1.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
5
hlomcmat
⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) )
6
1 2 3 4
atlrelat1
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) )
7
5 6
syl3an1
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) )