| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hlrelat2.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							hlrelat2.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							hlrelat2.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( lt ‘ 𝐾 )  =  ( lt ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								1 2 5 6
							 | 
							latnlemlt | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ¬  𝑋  ≤  𝑌  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							syl3an1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ¬  𝑋  ≤  𝑌  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  HL )  | 
						
						
							| 10 | 
							
								1 6
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							syl3an1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 )  | 
						
						
							| 14 | 
							
								1 2 5 13 3
							 | 
							hlrelat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 )  →  ∃ 𝑝  ∈  𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋  →  ∃ 𝑝  ∈  𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 ) ) )  | 
						
						
							| 16 | 
							
								9 11 12 15
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋  →  ∃ 𝑝  ∈  𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝐾  ∈  HL )  | 
						
						
							| 18 | 
							
								17
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝐾  ∈  Lat )  | 
						
						
							| 19 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								1 3
							 | 
							atbase | 
							⊢ ( 𝑝  ∈  𝐴  →  𝑝  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  𝐵 )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 23 | 
							
								1 2 13
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ∈  𝐵  ∧  𝑝  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ≤  𝑋  ∧  𝑝  ≤  𝑋 )  ↔  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 ) )  | 
						
						
							| 24 | 
							
								18 19 21 22 23
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ≤  𝑋  ∧  𝑝  ≤  𝑋 )  ↔  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ≤  𝑋  ∧  𝑝  ≤  𝑋 )  →  𝑝  ≤  𝑋 )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							biimtrrdi | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋  →  𝑝  ≤  𝑋 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantld | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 )  →  𝑝  ≤  𝑋 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 29 | 
							
								1 2 6
							 | 
							latlem12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑝  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ↔  𝑝  ≤  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) )  | 
						
						
							| 30 | 
							
								18 21 22 28 29
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ↔  𝑝  ≤  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							notbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ¬  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ↔  ¬  𝑝  ≤  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) )  | 
						
						
							| 32 | 
							
								1 2 5 13
							 | 
							latnle | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( ¬  𝑝  ≤  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) )  | 
						
						
							| 33 | 
							
								18 19 21 32
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ¬  𝑝  ≤  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) )  | 
						
						
							| 34 | 
							
								31 33
							 | 
							bitrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ¬  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) )  | 
						
						
							| 35 | 
							
								34 24
							 | 
							anbi12d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( ¬  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ≤  𝑋  ∧  𝑝  ≤  𝑋 ) )  ↔  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							pm3.21 | 
							⊢ ( 𝑝  ≤  𝑌  →  ( 𝑝  ≤  𝑋  →  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							orcom | 
							⊢ ( ( ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ∨  ¬  𝑝  ≤  𝑋 )  ↔  ( ¬  𝑝  ≤  𝑋  ∨  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							pm4.55 | 
							⊢ ( ¬  ( ¬  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ∧  𝑝  ≤  𝑋 )  ↔  ( ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ∨  ¬  𝑝  ≤  𝑋 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							imor | 
							⊢ ( ( 𝑝  ≤  𝑋  →  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) )  ↔  ( ¬  𝑝  ≤  𝑋  ∨  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 40 | 
							
								37 38 39
							 | 
							3bitr4ri | 
							⊢ ( ( 𝑝  ≤  𝑋  →  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) )  ↔  ¬  ( ¬  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ∧  𝑝  ≤  𝑋 ) )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							sylib | 
							⊢ ( 𝑝  ≤  𝑌  →  ¬  ( ¬  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ∧  𝑝  ≤  𝑋 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							con2i | 
							⊢ ( ( ¬  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ∧  𝑝  ≤  𝑋 )  →  ¬  𝑝  ≤  𝑌 )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantrl | 
							⊢ ( ( ¬  ( 𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 )  ≤  𝑋  ∧  𝑝  ≤  𝑋 ) )  →  ¬  𝑝  ≤  𝑌 )  | 
						
						
							| 44 | 
							
								35 43
							 | 
							biimtrrdi | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 )  →  ¬  𝑝  ≤  𝑌 ) )  | 
						
						
							| 45 | 
							
								27 44
							 | 
							jcad | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 )  →  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							reximdva | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ∃ 𝑝  ∈  𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  𝑋 )  →  ∃ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 47 | 
							
								16 46
							 | 
							syld | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋  →  ∃ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 48 | 
							
								8 47
							 | 
							sylbid | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ¬  𝑋  ≤  𝑌  →  ∃ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 49 | 
							
								1 2
							 | 
							lattr | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑝  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑝  ≤  𝑋  ∧  𝑋  ≤  𝑌 )  →  𝑝  ≤  𝑌 ) )  | 
						
						
							| 50 | 
							
								18 21 22 28 49
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( 𝑝  ≤  𝑋  ∧  𝑋  ≤  𝑌 )  →  𝑝  ≤  𝑌 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							exp4b | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑝  ∈  𝐴  →  ( 𝑝  ≤  𝑋  →  ( 𝑋  ≤  𝑌  →  𝑝  ≤  𝑌 ) ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							com34 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑝  ∈  𝐴  →  ( 𝑋  ≤  𝑌  →  ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							com23 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  ( 𝑝  ∈  𝐴  →  ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							ralrimdv | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  ∀ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							iman | 
							⊢ ( ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 )  ↔  ¬  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ralbii | 
							⊢ ( ∀ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 )  ↔  ∀ 𝑝  ∈  𝐴 ¬  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) )  | 
						
						
							| 57 | 
							
								
							 | 
							ralnex | 
							⊢ ( ∀ 𝑝  ∈  𝐴 ¬  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 )  ↔  ¬  ∃ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) )  | 
						
						
							| 58 | 
							
								56 57
							 | 
							bitri | 
							⊢ ( ∀ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 )  ↔  ¬  ∃ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) )  | 
						
						
							| 59 | 
							
								54 58
							 | 
							imbitrdi | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  ¬  ∃ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							con2d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ∃ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 )  →  ¬  𝑋  ≤  𝑌 ) )  | 
						
						
							| 61 | 
							
								48 60
							 | 
							impbid | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ¬  𝑋  ≤  𝑌  ↔  ∃ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑌 ) ) )  |