Step |
Hyp |
Ref |
Expression |
1 |
|
hlrelat2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
hlrelat2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
hlrelat2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
5 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
7 |
1 2 5 6
|
latnlemlt |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑌 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 ) ) |
8 |
4 7
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑌 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 ) ) |
9 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ HL ) |
10 |
1 6
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ) |
11 |
4 10
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ) |
12 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
13 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
14 |
1 2 5 13 3
|
hlrelat |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 ) → ∃ 𝑝 ∈ 𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) ) |
15 |
14
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 → ∃ 𝑝 ∈ 𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) ) ) |
16 |
9 11 12 15
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 → ∃ 𝑝 ∈ 𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) ) ) |
17 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
18 |
17
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
19 |
11
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ) |
20 |
1 3
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐵 ) |
22 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
23 |
1 2 13
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋 ) ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) ) |
24 |
18 19 21 22 23
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋 ) ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) ) |
25 |
|
simpr |
⊢ ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋 ) → 𝑝 ≤ 𝑋 ) |
26 |
24 25
|
syl6bir |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 → 𝑝 ≤ 𝑋 ) ) |
27 |
26
|
adantld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) → 𝑝 ≤ 𝑋 ) ) |
28 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) |
29 |
1 2 6
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ↔ 𝑝 ≤ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ) |
30 |
18 21 22 28 29
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ↔ 𝑝 ≤ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ) |
31 |
30
|
notbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ¬ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ↔ ¬ 𝑝 ≤ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ) |
32 |
1 2 5 13
|
latnle |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( ¬ 𝑝 ≤ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) ) |
33 |
18 19 21 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ¬ 𝑝 ≤ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) ) |
34 |
31 33
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ¬ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) ) |
35 |
34 24
|
anbi12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ¬ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋 ) ) ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) ) ) |
36 |
|
pm3.21 |
⊢ ( 𝑝 ≤ 𝑌 → ( 𝑝 ≤ 𝑋 → ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
37 |
|
orcom |
⊢ ( ( ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ∨ ¬ 𝑝 ≤ 𝑋 ) ↔ ( ¬ 𝑝 ≤ 𝑋 ∨ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
38 |
|
pm4.55 |
⊢ ( ¬ ( ¬ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ∧ 𝑝 ≤ 𝑋 ) ↔ ( ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ∨ ¬ 𝑝 ≤ 𝑋 ) ) |
39 |
|
imor |
⊢ ( ( 𝑝 ≤ 𝑋 → ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ↔ ( ¬ 𝑝 ≤ 𝑋 ∨ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
40 |
37 38 39
|
3bitr4ri |
⊢ ( ( 𝑝 ≤ 𝑋 → ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ↔ ¬ ( ¬ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ∧ 𝑝 ≤ 𝑋 ) ) |
41 |
36 40
|
sylib |
⊢ ( 𝑝 ≤ 𝑌 → ¬ ( ¬ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ∧ 𝑝 ≤ 𝑋 ) ) |
42 |
41
|
con2i |
⊢ ( ( ¬ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ∧ 𝑝 ≤ 𝑋 ) → ¬ 𝑝 ≤ 𝑌 ) |
43 |
42
|
adantrl |
⊢ ( ( ¬ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋 ) ) → ¬ 𝑝 ≤ 𝑌 ) |
44 |
35 43
|
syl6bir |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) → ¬ 𝑝 ≤ 𝑌 ) ) |
45 |
27 44
|
jcad |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) → ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) ) |
46 |
45
|
reximdva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ 𝑋 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) ) |
47 |
16 46
|
syld |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( lt ‘ 𝐾 ) 𝑋 → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) ) |
48 |
8 47
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑌 → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) ) |
49 |
1 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → 𝑝 ≤ 𝑌 ) ) |
50 |
18 21 22 28 49
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → 𝑝 ≤ 𝑌 ) ) |
51 |
50
|
exp4b |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ 𝐴 → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) |
52 |
51
|
com34 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ 𝐴 → ( 𝑋 ≤ 𝑌 → ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) ) |
53 |
52
|
com23 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑝 ∈ 𝐴 → ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) ) |
54 |
53
|
ralrimdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |
55 |
|
iman |
⊢ ( ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ↔ ¬ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) |
56 |
55
|
ralbii |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ↔ ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) |
57 |
|
ralnex |
⊢ ( ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ↔ ¬ ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) |
58 |
56 57
|
bitri |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ↔ ¬ ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) |
59 |
54 58
|
syl6ib |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ¬ ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) ) |
60 |
59
|
con2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) → ¬ 𝑋 ≤ 𝑌 ) ) |
61 |
48 60
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑌 ↔ ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌 ) ) ) |