Metamath Proof Explorer


Theorem hlrelat5N

Description: An atomistic lattice with 0 is relatively atomic, using the definition in Remark 2 of Kalmbach p. 149. (Contributed by NM, 21-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses hlrelat5.b 𝐵 = ( Base ‘ 𝐾 )
hlrelat5.l = ( le ‘ 𝐾 )
hlrelat5.s < = ( lt ‘ 𝐾 )
hlrelat5.j = ( join ‘ 𝐾 )
hlrelat5.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion hlrelat5N ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ∃ 𝑝𝐴 ( 𝑋 < ( 𝑋 𝑝 ) ∧ 𝑝 𝑌 ) )

Proof

Step Hyp Ref Expression
1 hlrelat5.b 𝐵 = ( Base ‘ 𝐾 )
2 hlrelat5.l = ( le ‘ 𝐾 )
3 hlrelat5.s < = ( lt ‘ 𝐾 )
4 hlrelat5.j = ( join ‘ 𝐾 )
5 hlrelat5.a 𝐴 = ( Atoms ‘ 𝐾 )
6 1 2 3 5 hlrelat1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌 → ∃ 𝑝𝐴 ( ¬ 𝑝 𝑋𝑝 𝑌 ) ) )
7 6 imp ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ∃ 𝑝𝐴 ( ¬ 𝑝 𝑋𝑝 𝑌 ) )
8 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
9 id ( 𝑋𝐵𝑋𝐵 )
10 1 5 atbase ( 𝑝𝐴𝑝𝐵 )
11 ovexd ( 𝑝𝐵 → ( 𝑋 𝑝 ) ∈ V )
12 2 3 pltval ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑋 𝑝 ) ∈ V ) → ( 𝑋 < ( 𝑋 𝑝 ) ↔ ( 𝑋 ( 𝑋 𝑝 ) ∧ 𝑋 ≠ ( 𝑋 𝑝 ) ) ) )
13 11 12 syl3an3 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( 𝑋 < ( 𝑋 𝑝 ) ↔ ( 𝑋 ( 𝑋 𝑝 ) ∧ 𝑋 ≠ ( 𝑋 𝑝 ) ) ) )
14 1 2 4 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → 𝑋 ( 𝑋 𝑝 ) )
15 14 biantrurd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( 𝑋 ≠ ( 𝑋 𝑝 ) ↔ ( 𝑋 ( 𝑋 𝑝 ) ∧ 𝑋 ≠ ( 𝑋 𝑝 ) ) ) )
16 13 15 bitr4d ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( 𝑋 < ( 𝑋 𝑝 ) ↔ 𝑋 ≠ ( 𝑋 𝑝 ) ) )
17 1 2 4 latleeqj1 ( ( 𝐾 ∈ Lat ∧ 𝑝𝐵𝑋𝐵 ) → ( 𝑝 𝑋 ↔ ( 𝑝 𝑋 ) = 𝑋 ) )
18 17 3com23 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( 𝑝 𝑋 ↔ ( 𝑝 𝑋 ) = 𝑋 ) )
19 1 4 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( 𝑋 𝑝 ) = ( 𝑝 𝑋 ) )
20 19 eqeq1d ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( ( 𝑋 𝑝 ) = 𝑋 ↔ ( 𝑝 𝑋 ) = 𝑋 ) )
21 18 20 bitr4d ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( 𝑝 𝑋 ↔ ( 𝑋 𝑝 ) = 𝑋 ) )
22 21 notbid ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( ¬ 𝑝 𝑋 ↔ ¬ ( 𝑋 𝑝 ) = 𝑋 ) )
23 nesym ( 𝑋 ≠ ( 𝑋 𝑝 ) ↔ ¬ ( 𝑋 𝑝 ) = 𝑋 )
24 22 23 bitr4di ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( ¬ 𝑝 𝑋𝑋 ≠ ( 𝑋 𝑝 ) ) )
25 16 24 bitr4d ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵 ) → ( 𝑋 < ( 𝑋 𝑝 ) ↔ ¬ 𝑝 𝑋 ) )
26 8 9 10 25 syl3an ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴 ) → ( 𝑋 < ( 𝑋 𝑝 ) ↔ ¬ 𝑝 𝑋 ) )
27 26 3expa ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ 𝑝𝐴 ) → ( 𝑋 < ( 𝑋 𝑝 ) ↔ ¬ 𝑝 𝑋 ) )
28 27 anbi1d ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ 𝑝𝐴 ) → ( ( 𝑋 < ( 𝑋 𝑝 ) ∧ 𝑝 𝑌 ) ↔ ( ¬ 𝑝 𝑋𝑝 𝑌 ) ) )
29 28 rexbidva ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑝𝐴 ( 𝑋 < ( 𝑋 𝑝 ) ∧ 𝑝 𝑌 ) ↔ ∃ 𝑝𝐴 ( ¬ 𝑝 𝑋𝑝 𝑌 ) ) )
30 29 3adant3 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) → ( ∃ 𝑝𝐴 ( 𝑋 < ( 𝑋 𝑝 ) ∧ 𝑝 𝑌 ) ↔ ∃ 𝑝𝐴 ( ¬ 𝑝 𝑋𝑝 𝑌 ) ) )
31 30 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ∃ 𝑝𝐴 ( 𝑋 < ( 𝑋 𝑝 ) ∧ 𝑝 𝑌 ) ↔ ∃ 𝑝𝐴 ( ¬ 𝑝 𝑋𝑝 𝑌 ) ) )
32 7 31 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ∃ 𝑝𝐴 ( 𝑋 < ( 𝑋 𝑝 ) ∧ 𝑝 𝑌 ) )