Step |
Hyp |
Ref |
Expression |
1 |
|
hlrelat5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
hlrelat5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
hlrelat5.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
|
hlrelat5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
hlrelat5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
1 2 3 5
|
hlrelat1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
7 |
6
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) |
8 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
9 |
|
id |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) |
10 |
1 5
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
11 |
|
ovexd |
⊢ ( 𝑝 ∈ 𝐵 → ( 𝑋 ∨ 𝑝 ) ∈ V ) |
12 |
2 3
|
pltval |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑝 ) ∈ V ) → ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑝 ) ∧ 𝑋 ≠ ( 𝑋 ∨ 𝑝 ) ) ) ) |
13 |
11 12
|
syl3an3 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑝 ) ∧ 𝑋 ≠ ( 𝑋 ∨ 𝑝 ) ) ) ) |
14 |
1 2 4
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑝 ) ) |
15 |
14
|
biantrurd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑋 ≠ ( 𝑋 ∨ 𝑝 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑝 ) ∧ 𝑋 ≠ ( 𝑋 ∨ 𝑝 ) ) ) ) |
16 |
13 15
|
bitr4d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ↔ 𝑋 ≠ ( 𝑋 ∨ 𝑝 ) ) ) |
17 |
1 2 4
|
latleeqj1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑝 ≤ 𝑋 ↔ ( 𝑝 ∨ 𝑋 ) = 𝑋 ) ) |
18 |
17
|
3com23 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ≤ 𝑋 ↔ ( 𝑝 ∨ 𝑋 ) = 𝑋 ) ) |
19 |
1 4
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑝 ) = ( 𝑝 ∨ 𝑋 ) ) |
20 |
19
|
eqeq1d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑝 ) = 𝑋 ↔ ( 𝑝 ∨ 𝑋 ) = 𝑋 ) ) |
21 |
18 20
|
bitr4d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ≤ 𝑋 ↔ ( 𝑋 ∨ 𝑝 ) = 𝑋 ) ) |
22 |
21
|
notbid |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( ¬ 𝑝 ≤ 𝑋 ↔ ¬ ( 𝑋 ∨ 𝑝 ) = 𝑋 ) ) |
23 |
|
nesym |
⊢ ( 𝑋 ≠ ( 𝑋 ∨ 𝑝 ) ↔ ¬ ( 𝑋 ∨ 𝑝 ) = 𝑋 ) |
24 |
22 23
|
bitr4di |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( ¬ 𝑝 ≤ 𝑋 ↔ 𝑋 ≠ ( 𝑋 ∨ 𝑝 ) ) ) |
25 |
16 24
|
bitr4d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ↔ ¬ 𝑝 ≤ 𝑋 ) ) |
26 |
8 9 10 25
|
syl3an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ↔ ¬ 𝑝 ≤ 𝑋 ) ) |
27 |
26
|
3expa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ↔ ¬ 𝑝 ≤ 𝑋 ) ) |
28 |
27
|
anbi1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ∧ 𝑝 ≤ 𝑌 ) ↔ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
29 |
28
|
rexbidva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ∧ 𝑝 ≤ 𝑌 ) ↔ ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
30 |
29
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ∧ 𝑝 ≤ 𝑌 ) ↔ ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ∧ 𝑝 ≤ 𝑌 ) ↔ ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
32 |
7 31
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ∧ 𝑝 ≤ 𝑌 ) ) |