Description: The scalar field of a subcomplex Hilbert space contains RR . (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlress.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
hlress.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
Assertion | hlress | ⊢ ( 𝑊 ∈ ℂHil → ℝ ⊆ 𝐾 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlress.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
2 | hlress.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
3 | 1 2 | hlprlem | ⊢ ( 𝑊 ∈ ℂHil → ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ∧ ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) ) |
4 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
5 | 4 | resscdrg | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ∧ ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) → ℝ ⊆ 𝐾 ) |
6 | 3 5 | syl | ⊢ ( 𝑊 ∈ ℂHil → ℝ ⊆ 𝐾 ) |