Metamath Proof Explorer


Theorem hlress

Description: The scalar field of a subcomplex Hilbert space contains RR . (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses hlress.f 𝐹 = ( Scalar ‘ 𝑊 )
hlress.k 𝐾 = ( Base ‘ 𝐹 )
Assertion hlress ( 𝑊 ∈ ℂHil → ℝ ⊆ 𝐾 )

Proof

Step Hyp Ref Expression
1 hlress.f 𝐹 = ( Scalar ‘ 𝑊 )
2 hlress.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 hlprlem ( 𝑊 ∈ ℂHil → ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝐾 ) ∈ DivRing ∧ ( ℂflds 𝐾 ) ∈ CMetSp ) )
4 eqid ( ℂflds 𝐾 ) = ( ℂflds 𝐾 )
5 4 resscdrg ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝐾 ) ∈ DivRing ∧ ( ℂflds 𝐾 ) ∈ CMetSp ) → ℝ ⊆ 𝐾 )
6 3 5 syl ( 𝑊 ∈ ℂHil → ℝ ⊆ 𝐾 )