Step |
Hyp |
Ref |
Expression |
1 |
|
hlsuprexch.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
hlsuprexch.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
hlsuprexch.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
hlsuprexch.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
8 |
1 2 5 3 6 7 4
|
ishlat2 |
⊢ ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝐾 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) ) ) ) |
9 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝐾 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝐾 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ) |
10 |
8 9
|
sylbi |
⊢ ( 𝐾 ∈ HL → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ) |
11 |
|
neeq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≠ 𝑦 ↔ 𝑃 ≠ 𝑦 ) ) |
12 |
|
neeq2 |
⊢ ( 𝑥 = 𝑃 → ( 𝑧 ≠ 𝑥 ↔ 𝑧 ≠ 𝑃 ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ∨ 𝑦 ) = ( 𝑃 ∨ 𝑦 ) ) |
14 |
13
|
breq2d |
⊢ ( 𝑥 = 𝑃 → ( 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ↔ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) |
15 |
12 14
|
3anbi13d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ↔ ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑥 = 𝑃 → ( ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ) |
17 |
11 16
|
imbi12d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ↔ ( 𝑃 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ) ) |
18 |
|
breq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≤ 𝑧 ↔ 𝑃 ≤ 𝑧 ) ) |
19 |
18
|
notbid |
⊢ ( 𝑥 = 𝑃 → ( ¬ 𝑥 ≤ 𝑧 ↔ ¬ 𝑃 ≤ 𝑧 ) ) |
20 |
|
breq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ↔ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) ) |
21 |
19 20
|
anbi12d |
⊢ ( 𝑥 = 𝑃 → ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) ↔ ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = 𝑃 → ( 𝑧 ∨ 𝑥 ) = ( 𝑧 ∨ 𝑃 ) ) |
23 |
22
|
breq2d |
⊢ ( 𝑥 = 𝑃 → ( 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ↔ 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) |
24 |
21 23
|
imbi12d |
⊢ ( 𝑥 = 𝑃 → ( ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ↔ ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑥 = 𝑃 → ( ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
26 |
17 25
|
anbi12d |
⊢ ( 𝑥 = 𝑃 → ( ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ↔ ( ( 𝑃 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) ) |
27 |
|
neeq2 |
⊢ ( 𝑦 = 𝑄 → ( 𝑃 ≠ 𝑦 ↔ 𝑃 ≠ 𝑄 ) ) |
28 |
|
neeq2 |
⊢ ( 𝑦 = 𝑄 → ( 𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑄 ) ) |
29 |
|
oveq2 |
⊢ ( 𝑦 = 𝑄 → ( 𝑃 ∨ 𝑦 ) = ( 𝑃 ∨ 𝑄 ) ) |
30 |
29
|
breq2d |
⊢ ( 𝑦 = 𝑄 → ( 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ↔ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
31 |
28 30
|
3anbi23d |
⊢ ( 𝑦 = 𝑄 → ( ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ↔ ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
32 |
31
|
rexbidv |
⊢ ( 𝑦 = 𝑄 → ( ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
33 |
27 32
|
imbi12d |
⊢ ( 𝑦 = 𝑄 → ( ( 𝑃 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ↔ ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
34 |
|
oveq2 |
⊢ ( 𝑦 = 𝑄 → ( 𝑧 ∨ 𝑦 ) = ( 𝑧 ∨ 𝑄 ) ) |
35 |
34
|
breq2d |
⊢ ( 𝑦 = 𝑄 → ( 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ↔ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) ) |
36 |
35
|
anbi2d |
⊢ ( 𝑦 = 𝑄 → ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) ↔ ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) ) ) |
37 |
|
breq1 |
⊢ ( 𝑦 = 𝑄 → ( 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ↔ 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) |
38 |
36 37
|
imbi12d |
⊢ ( 𝑦 = 𝑄 → ( ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ↔ ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
39 |
38
|
ralbidv |
⊢ ( 𝑦 = 𝑄 → ( ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
40 |
33 39
|
anbi12d |
⊢ ( 𝑦 = 𝑄 → ( ( ( 𝑃 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ↔ ( ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) ) |
41 |
26 40
|
rspc2v |
⊢ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) → ( ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) ) |
42 |
10 41
|
mpan9 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |
43 |
42
|
3impb |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑃 ≠ 𝑄 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ ( 𝑧 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑧 ∨ 𝑃 ) ) ) ) |