| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ishlg.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ishlg.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							ishlg.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							ishlg.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							ishlg.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							ishlg.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							hlln.1 | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 8 | 
							
								
							 | 
							hltr.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							hltr.1 | 
							⊢ ( 𝜑  →  𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							hltr.2 | 
							⊢ ( 𝜑  →  𝐵 ( 𝐾 ‘ 𝐷 ) 𝐶 )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 8 7 9
							 | 
							hlne1 | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐷 )  | 
						
						
							| 12 | 
							
								1 2 3 5 6 8 7 10
							 | 
							hlne2 | 
							⊢ ( 𝜑  →  𝐶  ≠  𝐷 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 )  | 
						
						
							| 14 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 15 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 16 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 17 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 18 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 19 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  | 
						
						
							| 21 | 
							
								1 13 2 14 15 16 17 18 19 20
							 | 
							tgbtwnexch | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝐶 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							orcd | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) )  | 
						
						
							| 23 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 24 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 25 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 26 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 27 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 28 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  | 
						
						
							| 30 | 
							
								1 2 23 24 25 26 27 28 29
							 | 
							tgbtwnconn3 | 
							⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) )  | 
						
						
							| 31 | 
							
								1 2 3 5 6 8 7
							 | 
							ishlg | 
							⊢ ( 𝜑  →  ( 𝐵 ( 𝐾 ‘ 𝐷 ) 𝐶  ↔  ( 𝐵  ≠  𝐷  ∧  𝐶  ≠  𝐷  ∧  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) ) ) )  | 
						
						
							| 32 | 
							
								10 31
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐵  ≠  𝐷  ∧  𝐶  ≠  𝐷  ∧  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							simp3d | 
							⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) )  | 
						
						
							| 35 | 
							
								22 30 34
							 | 
							mpjaodan | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) )  | 
						
						
							| 36 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 37 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 38 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 39 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 40 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 41 | 
							
								32
							 | 
							simp1d | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐷 )  | 
						
						
							| 42 | 
							
								41
							 | 
							necomd | 
							⊢ ( 𝜑  →  𝐷  ≠  𝐵 )  | 
						
						
							| 43 | 
							
								42
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐷  ≠  𝐵 )  | 
						
						
							| 44 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  | 
						
						
							| 46 | 
							
								1 2 36 37 38 39 40 43 44 45
							 | 
							tgbtwnconn1 | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐶 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) )  | 
						
						
							| 47 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 48 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 49 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 50 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 51 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 52 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  | 
						
						
							| 54 | 
							
								1 13 2 47 48 49 50 51 52 53
							 | 
							tgbtwnexch | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							olcd | 
							⊢ ( ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  ∧  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) )  | 
						
						
							| 56 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  ( 𝐵  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) )  | 
						
						
							| 57 | 
							
								46 55 56
							 | 
							mpjaodan | 
							⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) )  | 
						
						
							| 58 | 
							
								1 2 3 4 5 8 7
							 | 
							ishlg | 
							⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵  ↔  ( 𝐴  ≠  𝐷  ∧  𝐵  ≠  𝐷  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) ) ) )  | 
						
						
							| 59 | 
							
								9 58
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐴  ≠  𝐷  ∧  𝐵  ≠  𝐷  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							simp3d | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) )  | 
						
						
							| 61 | 
							
								35 57 60
							 | 
							mpjaodan | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) )  | 
						
						
							| 62 | 
							
								1 2 3 4 6 8 7
							 | 
							ishlg | 
							⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐶  ↔  ( 𝐴  ≠  𝐷  ∧  𝐶  ≠  𝐷  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) ) ) )  | 
						
						
							| 63 | 
							
								11 12 61 62
							 | 
							mpbir3and | 
							⊢ ( 𝜑  →  𝐴 ( 𝐾 ‘ 𝐷 ) 𝐶 )  |