| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmeoopn.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | hmeocnvcn | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 4 |  | imacnvcnv | ⊢ ( ◡ ◡ 𝐹  “  𝐴 )  =  ( 𝐹  “  𝐴 ) | 
						
							| 5 |  | cnclima | ⊢ ( ( ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 )  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ◡ ◡ 𝐹  “  𝐴 )  ∈  ( Clsd ‘ 𝐾 ) ) | 
						
							| 6 | 4 5 | eqeltrrid | ⊢ ( ( ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 )  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐹  “  𝐴 )  ∈  ( Clsd ‘ 𝐾 ) ) | 
						
							| 7 | 6 | ex | ⊢ ( ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 )  →  ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝐹  “  𝐴 )  ∈  ( Clsd ‘ 𝐾 ) ) ) | 
						
							| 8 | 3 7 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝐹  “  𝐴 )  ∈  ( Clsd ‘ 𝐾 ) ) ) | 
						
							| 9 |  | hmeocn | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 11 |  | cnclima | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  ( 𝐹  “  𝐴 )  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  ( ( 𝐹  “  𝐴 )  ∈  ( Clsd ‘ 𝐾 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) )  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( 𝐹  “  𝐴 )  ∈  ( Clsd ‘ 𝐾 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) )  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 15 | 1 14 | hmeof1o | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐹 : 𝑋 –1-1-onto→ ∪  𝐾 ) | 
						
							| 16 |  | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪  𝐾  →  𝐹 : 𝑋 –1-1→ ∪  𝐾 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐹 : 𝑋 –1-1→ ∪  𝐾 ) | 
						
							| 18 |  | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪  𝐾  ∧  𝐴  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) )  =  𝐴 ) | 
						
							| 19 | 17 18 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) )  =  𝐴 ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) )  ∈  ( Clsd ‘ 𝐽 )  ↔  𝐴  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 21 | 13 20 | sylibd | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( 𝐹  “  𝐴 )  ∈  ( Clsd ‘ 𝐾 )  →  𝐴  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 22 | 8 21 | impbid | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  ↔  ( 𝐹  “  𝐴 )  ∈  ( Clsd ‘ 𝐾 ) ) ) |