Step |
Hyp |
Ref |
Expression |
1 |
|
hmeoopn.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
hmeocnvcn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
4 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
5 |
|
cnclima |
⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) |
6 |
4 5
|
eqeltrrid |
⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) |
7 |
6
|
ex |
⊢ ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
8 |
3 7
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
9 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
11 |
|
cnclima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
12 |
11
|
ex |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
13 |
10 12
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
14 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
15 |
1 14
|
hmeof1o |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
16 |
|
f1of1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
17 |
15 16
|
syl |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
18 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
19 |
17 18
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
20 |
19
|
eleq1d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ↔ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |
21 |
13 20
|
sylibd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |
22 |
8 21
|
impbid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |