Step |
Hyp |
Ref |
Expression |
1 |
|
hmeoopn.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
hmeocnvcn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
3 |
1
|
cncls2i |
⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ⊆ ( ◡ ◡ 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ⊆ ( ◡ ◡ 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
5 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
6 |
5
|
fveq2i |
⊢ ( ( cls ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) = ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) |
7 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
8 |
4 6 7
|
3sstr3g |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
9 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
10 |
1
|
cnclsi |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) |
11 |
9 10
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) |
12 |
8 11
|
eqssd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |