Metamath Proof Explorer


Theorem hmeocls

Description: Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 𝑋 = 𝐽
Assertion hmeocls ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 hmeoopn.1 𝑋 = 𝐽
2 hmeocnvcn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )
3 1 cncls2i ( ( 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )
4 2 3 sylan ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )
5 imacnvcnv ( 𝐹𝐴 ) = ( 𝐹𝐴 )
6 5 fveq2i ( ( cls ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) = ( ( cls ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) )
7 imacnvcnv ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )
8 4 6 7 3sstr3g ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )
9 hmeocn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
10 1 cnclsi ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) )
11 9 10 sylan ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) )
12 8 11 eqssd ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )