| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmeoopn.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | hmeocnvcn | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 3 | 1 | cncls2i | ⊢ ( ( ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( cls ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹  “  𝐴 ) )  ⊆  ( ◡ ◡ 𝐹  “  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( cls ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹  “  𝐴 ) )  ⊆  ( ◡ ◡ 𝐹  “  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 5 |  | imacnvcnv | ⊢ ( ◡ ◡ 𝐹  “  𝐴 )  =  ( 𝐹  “  𝐴 ) | 
						
							| 6 | 5 | fveq2i | ⊢ ( ( cls ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹  “  𝐴 ) )  =  ( ( cls ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) | 
						
							| 7 |  | imacnvcnv | ⊢ ( ◡ ◡ 𝐹  “  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  =  ( 𝐹  “  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 8 | 4 6 7 | 3sstr3g | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( cls ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  ⊆  ( 𝐹  “  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 9 |  | hmeocn | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 10 | 1 | cnclsi | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐹  “  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  ⊆  ( ( cls ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐹  “  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  ⊆  ( ( cls ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 12 | 8 11 | eqssd | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( cls ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  =  ( 𝐹  “  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |