| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmeocnvcn | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 2 |  | hmeocn | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 3 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 4 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 5 | 3 4 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) | 
						
							| 6 |  | frel | ⊢ ( 𝐹 : ∪  𝐽 ⟶ ∪  𝐾  →  Rel  𝐹 ) | 
						
							| 7 | 2 5 6 | 3syl | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  Rel  𝐹 ) | 
						
							| 8 |  | dfrel2 | ⊢ ( Rel  𝐹  ↔  ◡ ◡ 𝐹  =  𝐹 ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  ◡ ◡ 𝐹  =  𝐹 ) | 
						
							| 10 | 9 2 | eqeltrd | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  ◡ ◡ 𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 11 |  | ishmeo | ⊢ ( ◡ 𝐹  ∈  ( 𝐾 Homeo 𝐽 )  ↔  ( ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 )  ∧  ◡ ◡ 𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) ) | 
						
							| 12 | 1 10 11 | sylanbrc | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  ◡ 𝐹  ∈  ( 𝐾 Homeo 𝐽 ) ) |