Metamath Proof Explorer


Theorem hmeocnv

Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion hmeocnv ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) )

Proof

Step Hyp Ref Expression
1 hmeocnvcn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )
2 hmeocn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
3 eqid 𝐽 = 𝐽
4 eqid 𝐾 = 𝐾
5 3 4 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝐽 𝐾 )
6 frel ( 𝐹 : 𝐽 𝐾 → Rel 𝐹 )
7 2 5 6 3syl ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → Rel 𝐹 )
8 dfrel2 ( Rel 𝐹 𝐹 = 𝐹 )
9 7 8 sylib ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 = 𝐹 )
10 9 2 eqeltrd ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
11 ishmeo ( 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ ( 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) )
12 1 10 11 sylanbrc ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) )