Step |
Hyp |
Ref |
Expression |
1 |
|
hmeocnvcn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
2 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
4 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
5 |
3 4
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
6 |
|
frel |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → Rel 𝐹 ) |
7 |
2 5 6
|
3syl |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → Rel 𝐹 ) |
8 |
|
dfrel2 |
⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) |
9 |
7 8
|
sylib |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ ◡ 𝐹 = 𝐹 ) |
10 |
9 2
|
eqeltrd |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ ◡ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
11 |
|
ishmeo |
⊢ ( ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ ◡ ◡ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
12 |
1 10 11
|
sylanbrc |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) |