Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hmeocnvb | ⊢ ( Rel 𝐹 → ( ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnv | ⊢ ( ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) | |
2 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
3 | eleq1 | ⊢ ( ◡ ◡ 𝐹 = 𝐹 → ( ◡ ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) | |
4 | 2 3 | sylbi | ⊢ ( Rel 𝐹 → ( ◡ ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) |
5 | 1 4 | syl5ib | ⊢ ( Rel 𝐹 → ( ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) |
6 | hmeocnv | ⊢ ( 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) → ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) | |
7 | 5 6 | impbid1 | ⊢ ( Rel 𝐹 → ( ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) |