Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeocnvb | ⊢ ( Rel 𝐹 → ( ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocnv | ⊢ ( ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) | |
| 2 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 3 | eleq1 | ⊢ ( ◡ ◡ 𝐹 = 𝐹 → ( ◡ ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( Rel 𝐹 → ( ◡ ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) |
| 5 | 1 4 | imbitrid | ⊢ ( Rel 𝐹 → ( ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) |
| 6 | hmeocnv | ⊢ ( 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) → ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) | |
| 7 | 5 6 | impbid1 | ⊢ ( Rel 𝐹 → ( ◡ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) ) |