Metamath Proof Explorer


Theorem hmeocnvb

Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmeocnvb ( Rel 𝐹 → ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 hmeocnv ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) )
2 dfrel2 ( Rel 𝐹 𝐹 = 𝐹 )
3 eleq1 ( 𝐹 = 𝐹 → ( 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) )
4 2 3 sylbi ( Rel 𝐹 → ( 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) )
5 1 4 syl5ib ( Rel 𝐹 → ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) )
6 hmeocnv ( 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) → 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) )
7 5 6 impbid1 ( Rel 𝐹 → ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) )