Metamath Proof Explorer


Theorem hmeocnvcn

Description: The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion hmeocnvcn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )

Proof

Step Hyp Ref Expression
1 ishmeo ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) )
2 1 simprbi ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )