Metamath Proof Explorer


Theorem hmeoima

Description: The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion hmeoima ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝐽 ) → ( 𝐹𝐴 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 hmeocnvcn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )
2 imacnvcnv ( 𝐹𝐴 ) = ( 𝐹𝐴 )
3 cnima ( ( 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴𝐽 ) → ( 𝐹𝐴 ) ∈ 𝐾 )
4 2 3 eqeltrrid ( ( 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴𝐽 ) → ( 𝐹𝐴 ) ∈ 𝐾 )
5 1 4 sylan ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝐽 ) → ( 𝐹𝐴 ) ∈ 𝐾 )