Description: The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hmeoima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) | |
2 | imacnvcnv | ⊢ ( ◡ ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) | |
3 | cnima | ⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ∈ 𝐽 ) → ( ◡ ◡ 𝐹 “ 𝐴 ) ∈ 𝐾 ) | |
4 | 2 3 | eqeltrrid | ⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) |
5 | 1 4 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) |