| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmeoimaf1o.1 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐽 ↦ ( 𝐹 “ 𝑥 ) ) |
| 2 |
|
hmeoima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
| 3 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑦 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑦 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 7 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 8 |
6 7
|
hmeof1o |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 ) |
| 10 |
|
f1of1 |
⊢ ( 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 → 𝐹 : ∪ 𝐽 –1-1→ ∪ 𝐾 ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐹 : ∪ 𝐽 –1-1→ ∪ 𝐾 ) |
| 12 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽 ) |
| 13 |
12
|
ad2antrl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 14 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ dom 𝐹 |
| 15 |
|
f1dm |
⊢ ( 𝐹 : ∪ 𝐽 –1-1→ ∪ 𝐾 → dom 𝐹 = ∪ 𝐽 ) |
| 16 |
11 15
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 17 |
14 16
|
sseqtrid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ ∪ 𝐽 ) |
| 18 |
|
f1imaeq |
⊢ ( ( 𝐹 : ∪ 𝐽 –1-1→ ∪ 𝐾 ∧ ( 𝑥 ⊆ ∪ 𝐽 ∧ ( ◡ 𝐹 “ 𝑦 ) ⊆ ∪ 𝐽 ) ) → ( ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ↔ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 19 |
11 13 17 18
|
syl12anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ↔ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 20 |
|
f1ofo |
⊢ ( 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 → 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 ) |
| 21 |
9 20
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 ) |
| 22 |
|
elssuni |
⊢ ( 𝑦 ∈ 𝐾 → 𝑦 ⊆ ∪ 𝐾 ) |
| 23 |
22
|
ad2antll |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑦 ⊆ ∪ 𝐾 ) |
| 24 |
|
foimacnv |
⊢ ( ( 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 ∧ 𝑦 ⊆ ∪ 𝐾 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
| 25 |
21 23 24
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
| 26 |
25
|
eqeq2d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ↔ ( 𝐹 “ 𝑥 ) = 𝑦 ) ) |
| 27 |
|
eqcom |
⊢ ( ( 𝐹 “ 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐹 “ 𝑥 ) ) |
| 28 |
26 27
|
bitrdi |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ↔ 𝑦 = ( 𝐹 “ 𝑥 ) ) ) |
| 29 |
19 28
|
bitr3d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ↔ 𝑦 = ( 𝐹 “ 𝑥 ) ) ) |
| 30 |
1 2 5 29
|
f1o2d |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐺 : 𝐽 –1-1-onto→ 𝐾 ) |