Metamath Proof Explorer


Theorem hmeoimaf1o

Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis hmeoimaf1o.1 𝐺 = ( 𝑥𝐽 ↦ ( 𝐹𝑥 ) )
Assertion hmeoimaf1o ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐺 : 𝐽1-1-onto𝐾 )

Proof

Step Hyp Ref Expression
1 hmeoimaf1o.1 𝐺 = ( 𝑥𝐽 ↦ ( 𝐹𝑥 ) )
2 hmeoima ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑥𝐽 ) → ( 𝐹𝑥 ) ∈ 𝐾 )
3 hmeocn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
4 cnima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑦𝐾 ) → ( 𝐹𝑦 ) ∈ 𝐽 )
5 3 4 sylan ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑦𝐾 ) → ( 𝐹𝑦 ) ∈ 𝐽 )
6 eqid 𝐽 = 𝐽
7 eqid 𝐾 = 𝐾
8 6 7 hmeof1o ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝐽1-1-onto 𝐾 )
9 8 adantr ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → 𝐹 : 𝐽1-1-onto 𝐾 )
10 f1of1 ( 𝐹 : 𝐽1-1-onto 𝐾𝐹 : 𝐽1-1 𝐾 )
11 9 10 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → 𝐹 : 𝐽1-1 𝐾 )
12 elssuni ( 𝑥𝐽𝑥 𝐽 )
13 12 ad2antrl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → 𝑥 𝐽 )
14 cnvimass ( 𝐹𝑦 ) ⊆ dom 𝐹
15 f1dm ( 𝐹 : 𝐽1-1 𝐾 → dom 𝐹 = 𝐽 )
16 11 15 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → dom 𝐹 = 𝐽 )
17 14 16 sseqtrid ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → ( 𝐹𝑦 ) ⊆ 𝐽 )
18 f1imaeq ( ( 𝐹 : 𝐽1-1 𝐾 ∧ ( 𝑥 𝐽 ∧ ( 𝐹𝑦 ) ⊆ 𝐽 ) ) → ( ( 𝐹𝑥 ) = ( 𝐹 “ ( 𝐹𝑦 ) ) ↔ 𝑥 = ( 𝐹𝑦 ) ) )
19 11 13 17 18 syl12anc ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → ( ( 𝐹𝑥 ) = ( 𝐹 “ ( 𝐹𝑦 ) ) ↔ 𝑥 = ( 𝐹𝑦 ) ) )
20 f1ofo ( 𝐹 : 𝐽1-1-onto 𝐾𝐹 : 𝐽onto 𝐾 )
21 9 20 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → 𝐹 : 𝐽onto 𝐾 )
22 elssuni ( 𝑦𝐾𝑦 𝐾 )
23 22 ad2antll ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → 𝑦 𝐾 )
24 foimacnv ( ( 𝐹 : 𝐽onto 𝐾𝑦 𝐾 ) → ( 𝐹 “ ( 𝐹𝑦 ) ) = 𝑦 )
25 21 23 24 syl2anc ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → ( 𝐹 “ ( 𝐹𝑦 ) ) = 𝑦 )
26 25 eqeq2d ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → ( ( 𝐹𝑥 ) = ( 𝐹 “ ( 𝐹𝑦 ) ) ↔ ( 𝐹𝑥 ) = 𝑦 ) )
27 eqcom ( ( 𝐹𝑥 ) = 𝑦𝑦 = ( 𝐹𝑥 ) )
28 26 27 bitrdi ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → ( ( 𝐹𝑥 ) = ( 𝐹 “ ( 𝐹𝑦 ) ) ↔ 𝑦 = ( 𝐹𝑥 ) ) )
29 19 28 bitr3d ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ( 𝑥𝐽𝑦𝐾 ) ) → ( 𝑥 = ( 𝐹𝑦 ) ↔ 𝑦 = ( 𝐹𝑥 ) ) )
30 1 2 5 29 f1o2d ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐺 : 𝐽1-1-onto𝐾 )