Metamath Proof Explorer


Theorem hmeontr

Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 𝑋 = 𝐽
Assertion hmeontr ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 hmeoopn.1 𝑋 = 𝐽
2 hmeocn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
3 2 adantr ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
4 imassrn ( 𝐹𝐴 ) ⊆ ran 𝐹
5 eqid 𝐾 = 𝐾
6 1 5 hmeof1o ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋1-1-onto 𝐾 )
7 6 adantr ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → 𝐹 : 𝑋1-1-onto 𝐾 )
8 f1ofo ( 𝐹 : 𝑋1-1-onto 𝐾𝐹 : 𝑋onto 𝐾 )
9 forn ( 𝐹 : 𝑋onto 𝐾 → ran 𝐹 = 𝐾 )
10 7 8 9 3syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ran 𝐹 = 𝐾 )
11 4 10 sseqtrid ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹𝐴 ) ⊆ 𝐾 )
12 5 cnntri ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹𝐴 ) ⊆ 𝐾 ) → ( 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐹 “ ( 𝐹𝐴 ) ) ) )
13 3 11 12 syl2anc ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐹 “ ( 𝐹𝐴 ) ) ) )
14 f1of1 ( 𝐹 : 𝑋1-1-onto 𝐾𝐹 : 𝑋1-1 𝐾 )
15 7 14 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → 𝐹 : 𝑋1-1 𝐾 )
16 f1imacnv ( ( 𝐹 : 𝑋1-1 𝐾𝐴𝑋 ) → ( 𝐹 “ ( 𝐹𝐴 ) ) = 𝐴 )
17 15 16 sylancom ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹 “ ( 𝐹𝐴 ) ) = 𝐴 )
18 17 fveq2d ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐹 “ ( 𝐹𝐴 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )
19 13 18 sseqtrd ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )
20 f1ofun ( 𝐹 : 𝑋1-1-onto 𝐾 → Fun 𝐹 )
21 7 20 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → Fun 𝐹 )
22 cntop2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
23 3 22 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → 𝐾 ∈ Top )
24 5 ntrss3 ( ( 𝐾 ∈ Top ∧ ( 𝐹𝐴 ) ⊆ 𝐾 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ 𝐾 )
25 23 11 24 syl2anc ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ 𝐾 )
26 25 10 sseqtrrd ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ ran 𝐹 )
27 funimass1 ( ( Fun 𝐹 ∧ ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ ran 𝐹 ) → ( ( 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) )
28 21 26 27 syl2anc ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) )
29 19 28 mpd ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )
30 hmeocnvcn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )
31 1 cnntri ( ( 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴𝑋 ) → ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) )
32 30 31 sylan ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) )
33 imacnvcnv ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )
34 imacnvcnv ( 𝐹𝐴 ) = ( 𝐹𝐴 )
35 34 fveq2i ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) = ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) )
36 32 33 35 3sstr3g ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) )
37 29 36 eqssd ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )