Step |
Hyp |
Ref |
Expression |
1 |
|
hmeoopn.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
imassrn |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 |
5 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
6 |
1 5
|
hmeof1o |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
8 |
|
f1ofo |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –onto→ ∪ 𝐾 ) |
9 |
|
forn |
⊢ ( 𝐹 : 𝑋 –onto→ ∪ 𝐾 → ran 𝐹 = ∪ 𝐾 ) |
10 |
7 8 9
|
3syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ran 𝐹 = ∪ 𝐾 ) |
11 |
4 10
|
sseqtrid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) |
12 |
5
|
cnntri |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ) ) |
13 |
3 11 12
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ) ) |
14 |
|
f1of1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
15 |
7 14
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
16 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
17 |
15 16
|
sylancom |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
19 |
13 18
|
sseqtrd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
20 |
|
f1ofun |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → Fun 𝐹 ) |
21 |
7 20
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → Fun 𝐹 ) |
22 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
23 |
3 22
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
24 |
5
|
ntrss3 |
⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ∪ 𝐾 ) |
25 |
23 11 24
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ∪ 𝐾 ) |
26 |
25 10
|
sseqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ran 𝐹 ) |
27 |
|
funimass1 |
⊢ ( ( Fun 𝐹 ∧ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ran 𝐹 ) → ( ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) |
28 |
21 26 27
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) |
29 |
19 28
|
mpd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
30 |
|
hmeocnvcn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
31 |
1
|
cnntri |
⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ ◡ 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ) |
32 |
30 31
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ ◡ 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ) |
33 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
34 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
35 |
34
|
fveq2i |
⊢ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) = ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) |
36 |
32 33 35
|
3sstr3g |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) |
37 |
29 36
|
eqssd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |