| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmeoopn.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | hmeocn | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 4 |  | imassrn | ⊢ ( 𝐹  “  𝐴 )  ⊆  ran  𝐹 | 
						
							| 5 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 6 | 1 5 | hmeof1o | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐹 : 𝑋 –1-1-onto→ ∪  𝐾 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐹 : 𝑋 –1-1-onto→ ∪  𝐾 ) | 
						
							| 8 |  | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪  𝐾  →  𝐹 : 𝑋 –onto→ ∪  𝐾 ) | 
						
							| 9 |  | forn | ⊢ ( 𝐹 : 𝑋 –onto→ ∪  𝐾  →  ran  𝐹  =  ∪  𝐾 ) | 
						
							| 10 | 7 8 9 | 3syl | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ran  𝐹  =  ∪  𝐾 ) | 
						
							| 11 | 4 10 | sseqtrid | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐹  “  𝐴 )  ⊆  ∪  𝐾 ) | 
						
							| 12 | 5 | cnntri | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  ( 𝐹  “  𝐴 )  ⊆  ∪  𝐾 )  →  ( ◡ 𝐹  “  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 13 | 3 11 12 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 14 |  | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪  𝐾  →  𝐹 : 𝑋 –1-1→ ∪  𝐾 ) | 
						
							| 15 | 7 14 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐹 : 𝑋 –1-1→ ∪  𝐾 ) | 
						
							| 16 |  | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪  𝐾  ∧  𝐴  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) )  =  𝐴 ) | 
						
							| 17 | 15 16 | sylancom | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) )  =  𝐴 ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹  “  ( 𝐹  “  𝐴 ) ) )  =  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 19 | 13 18 | sseqtrd | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) )  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 20 |  | f1ofun | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪  𝐾  →  Fun  𝐹 ) | 
						
							| 21 | 7 20 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  Fun  𝐹 ) | 
						
							| 22 |  | cntop2 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 23 | 3 22 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  𝐾  ∈  Top ) | 
						
							| 24 | 5 | ntrss3 | ⊢ ( ( 𝐾  ∈  Top  ∧  ( 𝐹  “  𝐴 )  ⊆  ∪  𝐾 )  →  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  ⊆  ∪  𝐾 ) | 
						
							| 25 | 23 11 24 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  ⊆  ∪  𝐾 ) | 
						
							| 26 | 25 10 | sseqtrrd | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  ⊆  ran  𝐹 ) | 
						
							| 27 |  | funimass1 | ⊢ ( ( Fun  𝐹  ∧  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  ⊆  ran  𝐹 )  →  ( ( ◡ 𝐹  “  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) )  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  →  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  ⊆  ( 𝐹  “  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) | 
						
							| 28 | 21 26 27 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( ◡ 𝐹  “  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) )  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  →  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  ⊆  ( 𝐹  “  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) | 
						
							| 29 | 19 28 | mpd | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  ⊆  ( 𝐹  “  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 30 |  | hmeocnvcn | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 31 | 1 | cnntri | ⊢ ( ( ◡ 𝐹  ∈  ( 𝐾  Cn  𝐽 )  ∧  𝐴  ⊆  𝑋 )  →  ( ◡ ◡ 𝐹  “  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  ⊆  ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹  “  𝐴 ) ) ) | 
						
							| 32 | 30 31 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ◡ ◡ 𝐹  “  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  ⊆  ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹  “  𝐴 ) ) ) | 
						
							| 33 |  | imacnvcnv | ⊢ ( ◡ ◡ 𝐹  “  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  ( 𝐹  “  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 34 |  | imacnvcnv | ⊢ ( ◡ ◡ 𝐹  “  𝐴 )  =  ( 𝐹  “  𝐴 ) | 
						
							| 35 | 34 | fveq2i | ⊢ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹  “  𝐴 ) )  =  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) | 
						
							| 36 | 32 33 35 | 3sstr3g | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐹  “  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  ⊆  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 37 | 29 36 | eqssd | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( int ‘ 𝐾 ) ‘ ( 𝐹  “  𝐴 ) )  =  ( 𝐹  “  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |