Metamath Proof Explorer


Theorem hmeoopn

Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 𝑋 = 𝐽
Assertion hmeoopn ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐴𝐽 ↔ ( 𝐹𝐴 ) ∈ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 hmeoopn.1 𝑋 = 𝐽
2 hmeoima ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝐽 ) → ( 𝐹𝐴 ) ∈ 𝐾 )
3 2 ex ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐴𝐽 → ( 𝐹𝐴 ) ∈ 𝐾 ) )
4 3 adantr ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐴𝐽 → ( 𝐹𝐴 ) ∈ 𝐾 ) )
5 hmeocn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
6 cnima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹𝐴 ) ∈ 𝐾 ) → ( 𝐹 “ ( 𝐹𝐴 ) ) ∈ 𝐽 )
7 6 ex ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( 𝐹𝐴 ) ∈ 𝐾 → ( 𝐹 “ ( 𝐹𝐴 ) ) ∈ 𝐽 ) )
8 5 7 syl ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ( ( 𝐹𝐴 ) ∈ 𝐾 → ( 𝐹 “ ( 𝐹𝐴 ) ) ∈ 𝐽 ) )
9 8 adantr ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( 𝐹𝐴 ) ∈ 𝐾 → ( 𝐹 “ ( 𝐹𝐴 ) ) ∈ 𝐽 ) )
10 eqid 𝐾 = 𝐾
11 1 10 hmeof1o ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋1-1-onto 𝐾 )
12 f1of1 ( 𝐹 : 𝑋1-1-onto 𝐾𝐹 : 𝑋1-1 𝐾 )
13 11 12 syl ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋1-1 𝐾 )
14 f1imacnv ( ( 𝐹 : 𝑋1-1 𝐾𝐴𝑋 ) → ( 𝐹 “ ( 𝐹𝐴 ) ) = 𝐴 )
15 13 14 sylan ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐹 “ ( 𝐹𝐴 ) ) = 𝐴 )
16 15 eleq1d ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( 𝐹 “ ( 𝐹𝐴 ) ) ∈ 𝐽𝐴𝐽 ) )
17 9 16 sylibd ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( ( 𝐹𝐴 ) ∈ 𝐾𝐴𝐽 ) )
18 4 17 impbid ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴𝑋 ) → ( 𝐴𝐽 ↔ ( 𝐹𝐴 ) ∈ 𝐾 ) )