Step |
Hyp |
Ref |
Expression |
1 |
|
hmeoopn.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
hmeoima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) |
3 |
2
|
ex |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝐴 ∈ 𝐽 → ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐽 → ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) ) |
5 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
6 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) |
7 |
6
|
ex |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( 𝐹 “ 𝐴 ) ∈ 𝐾 → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
8 |
5 7
|
syl |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ( ( 𝐹 “ 𝐴 ) ∈ 𝐾 → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ 𝐾 → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
10 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
11 |
1 10
|
hmeof1o |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
12 |
|
f1of1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
13 |
11 12
|
syl |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
14 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
15 |
13 14
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
16 |
15
|
eleq1d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ 𝐽 ↔ 𝐴 ∈ 𝐽 ) ) |
17 |
9 16
|
sylibd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ 𝐾 → 𝐴 ∈ 𝐽 ) ) |
18 |
4 17
|
impbid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( 𝐹 “ 𝐴 ) ∈ 𝐾 ) ) |