| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmeocn | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 2 |  | cntop2 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 4 |  | toptopon2 | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 6 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 7 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 8 | 6 7 | hmeof1o | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐹 : ∪  𝐽 –1-1-onto→ ∪  𝐾 ) | 
						
							| 9 |  | f1ofo | ⊢ ( 𝐹 : ∪  𝐽 –1-1-onto→ ∪  𝐾  →  𝐹 : ∪  𝐽 –onto→ ∪  𝐾 ) | 
						
							| 10 |  | forn | ⊢ ( 𝐹 : ∪  𝐽 –onto→ ∪  𝐾  →  ran  𝐹  =  ∪  𝐾 ) | 
						
							| 11 | 8 9 10 | 3syl | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  ran  𝐹  =  ∪  𝐾 ) | 
						
							| 12 |  | hmeoima | ⊢ ( ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  ∧  𝑥  ∈  𝐽 )  →  ( 𝐹  “  𝑥 )  ∈  𝐾 ) | 
						
							| 13 | 5 1 11 12 | qtopomap | ⊢ ( 𝐹  ∈  ( 𝐽 Homeo 𝐾 )  →  𝐾  =  ( 𝐽  qTop  𝐹 ) ) |