Step |
Hyp |
Ref |
Expression |
1 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
2 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 ∈ Top ) |
4 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
5 |
3 4
|
sylib |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
7 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
8 |
6 7
|
hmeof1o |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 ) |
9 |
|
f1ofo |
⊢ ( 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 → 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 ) |
10 |
|
forn |
⊢ ( 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 → ran 𝐹 = ∪ 𝐾 ) |
11 |
8 9 10
|
3syl |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ran 𝐹 = ∪ 𝐾 ) |
12 |
|
hmeoima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
13 |
5 1 11 12
|
qtopomap |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |