Metamath Proof Explorer


Theorem hmeoqtop

Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion hmeoqtop ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 = ( 𝐽 qTop 𝐹 ) )

Proof

Step Hyp Ref Expression
1 hmeocn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
2 cntop2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
3 1 2 syl ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 ∈ Top )
4 toptopon2 ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
5 3 4 sylib ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
6 eqid 𝐽 = 𝐽
7 eqid 𝐾 = 𝐾
8 6 7 hmeof1o ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝐽1-1-onto 𝐾 )
9 f1ofo ( 𝐹 : 𝐽1-1-onto 𝐾𝐹 : 𝐽onto 𝐾 )
10 forn ( 𝐹 : 𝐽onto 𝐾 → ran 𝐹 = 𝐾 )
11 8 9 10 3syl ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ran 𝐹 = 𝐾 )
12 hmeoima ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑥𝐽 ) → ( 𝐹𝑥 ) ∈ 𝐾 )
13 5 1 11 12 qtopomap ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 = ( 𝐽 qTop 𝐹 ) )