Metamath Proof Explorer


Theorem hmeores

Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014) (Proof shortened by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis hmeores.1 𝑋 = 𝐽
Assertion hmeores ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Homeo ( 𝐾t ( 𝐹𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 hmeores.1 𝑋 = 𝐽
2 hmeocn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
3 2 adantr ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
4 1 cnrest ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn 𝐾 ) )
5 3 4 sylancom ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn 𝐾 ) )
6 cntop2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
7 3 6 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → 𝐾 ∈ Top )
8 eqid 𝐾 = 𝐾
9 8 toptopon ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
10 7 9 sylib ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
11 df-ima ( 𝐹𝑌 ) = ran ( 𝐹𝑌 )
12 11 eqimss2i ran ( 𝐹𝑌 ) ⊆ ( 𝐹𝑌 )
13 12 a1i ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ran ( 𝐹𝑌 ) ⊆ ( 𝐹𝑌 ) )
14 imassrn ( 𝐹𝑌 ) ⊆ ran 𝐹
15 1 8 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 𝐾 )
16 3 15 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → 𝐹 : 𝑋 𝐾 )
17 16 frnd ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ran 𝐹 𝐾 )
18 14 17 sstrid ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) ⊆ 𝐾 )
19 cnrest2 ( ( 𝐾 ∈ ( TopOn ‘ 𝐾 ) ∧ ran ( 𝐹𝑌 ) ⊆ ( 𝐹𝑌 ) ∧ ( 𝐹𝑌 ) ⊆ 𝐾 ) → ( ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn 𝐾 ) ↔ ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn ( 𝐾t ( 𝐹𝑌 ) ) ) ) )
20 10 13 18 19 syl3anc ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn 𝐾 ) ↔ ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn ( 𝐾t ( 𝐹𝑌 ) ) ) ) )
21 5 20 mpbid ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn ( 𝐾t ( 𝐹𝑌 ) ) ) )
22 hmeocnvcn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )
23 22 adantr ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )
24 8 1 cnf ( 𝐹 ∈ ( 𝐾 Cn 𝐽 ) → 𝐹 : 𝐾𝑋 )
25 ffun ( 𝐹 : 𝐾𝑋 → Fun 𝐹 )
26 funcnvres ( Fun 𝐹 ( 𝐹𝑌 ) = ( 𝐹 ↾ ( 𝐹𝑌 ) ) )
27 23 24 25 26 4syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) = ( 𝐹 ↾ ( 𝐹𝑌 ) ) )
28 8 cnrest ( ( 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ ( 𝐹𝑌 ) ⊆ 𝐾 ) → ( 𝐹 ↾ ( 𝐹𝑌 ) ) ∈ ( ( 𝐾t ( 𝐹𝑌 ) ) Cn 𝐽 ) )
29 23 18 28 syl2anc ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹 ↾ ( 𝐹𝑌 ) ) ∈ ( ( 𝐾t ( 𝐹𝑌 ) ) Cn 𝐽 ) )
30 27 29 eqeltrd ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) ∈ ( ( 𝐾t ( 𝐹𝑌 ) ) Cn 𝐽 ) )
31 cntop1 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top )
32 3 31 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → 𝐽 ∈ Top )
33 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
34 32 33 sylib ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
35 dfdm4 dom ( 𝐹𝑌 ) = ran ( 𝐹𝑌 )
36 fssres ( ( 𝐹 : 𝑋 𝐾𝑌𝑋 ) → ( 𝐹𝑌 ) : 𝑌 𝐾 )
37 16 36 sylancom ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) : 𝑌 𝐾 )
38 37 fdmd ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → dom ( 𝐹𝑌 ) = 𝑌 )
39 35 38 eqtr3id ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ran ( 𝐹𝑌 ) = 𝑌 )
40 eqimss ( ran ( 𝐹𝑌 ) = 𝑌 → ran ( 𝐹𝑌 ) ⊆ 𝑌 )
41 39 40 syl ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ran ( 𝐹𝑌 ) ⊆ 𝑌 )
42 simpr ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → 𝑌𝑋 )
43 cnrest2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ran ( 𝐹𝑌 ) ⊆ 𝑌𝑌𝑋 ) → ( ( 𝐹𝑌 ) ∈ ( ( 𝐾t ( 𝐹𝑌 ) ) Cn 𝐽 ) ↔ ( 𝐹𝑌 ) ∈ ( ( 𝐾t ( 𝐹𝑌 ) ) Cn ( 𝐽t 𝑌 ) ) ) )
44 34 41 42 43 syl3anc ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( ( 𝐹𝑌 ) ∈ ( ( 𝐾t ( 𝐹𝑌 ) ) Cn 𝐽 ) ↔ ( 𝐹𝑌 ) ∈ ( ( 𝐾t ( 𝐹𝑌 ) ) Cn ( 𝐽t 𝑌 ) ) ) )
45 30 44 mpbid ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) ∈ ( ( 𝐾t ( 𝐹𝑌 ) ) Cn ( 𝐽t 𝑌 ) ) )
46 ishmeo ( ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Homeo ( 𝐾t ( 𝐹𝑌 ) ) ) ↔ ( ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn ( 𝐾t ( 𝐹𝑌 ) ) ) ∧ ( 𝐹𝑌 ) ∈ ( ( 𝐾t ( 𝐹𝑌 ) ) Cn ( 𝐽t 𝑌 ) ) ) )
47 21 45 46 sylanbrc ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌𝑋 ) → ( 𝐹𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Homeo ( 𝐾t ( 𝐹𝑌 ) ) ) )