Step |
Hyp |
Ref |
Expression |
1 |
|
hmeores.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
1
|
cnrest |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) |
5 |
3 4
|
sylancom |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) |
6 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
7 |
3 6
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
8 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
9 |
8
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
10 |
7 9
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
11 |
|
df-ima |
⊢ ( 𝐹 “ 𝑌 ) = ran ( 𝐹 ↾ 𝑌 ) |
12 |
11
|
eqimss2i |
⊢ ran ( 𝐹 ↾ 𝑌 ) ⊆ ( 𝐹 “ 𝑌 ) |
13 |
12
|
a1i |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ran ( 𝐹 ↾ 𝑌 ) ⊆ ( 𝐹 “ 𝑌 ) ) |
14 |
|
imassrn |
⊢ ( 𝐹 “ 𝑌 ) ⊆ ran 𝐹 |
15 |
1 8
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
16 |
3 15
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
17 |
16
|
frnd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ran 𝐹 ⊆ ∪ 𝐾 ) |
18 |
14 17
|
sstrid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 “ 𝑌 ) ⊆ ∪ 𝐾 ) |
19 |
|
cnrest2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ran ( 𝐹 ↾ 𝑌 ) ⊆ ( 𝐹 “ 𝑌 ) ∧ ( 𝐹 “ 𝑌 ) ⊆ ∪ 𝐾 ) → ( ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ) ) |
20 |
10 13 18 19
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ) ) |
21 |
5 20
|
mpbid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ) |
22 |
|
hmeocnvcn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
24 |
8 1
|
cnf |
⊢ ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) → ◡ 𝐹 : ∪ 𝐾 ⟶ 𝑋 ) |
25 |
|
ffun |
⊢ ( ◡ 𝐹 : ∪ 𝐾 ⟶ 𝑋 → Fun ◡ 𝐹 ) |
26 |
|
funcnvres |
⊢ ( Fun ◡ 𝐹 → ◡ ( 𝐹 ↾ 𝑌 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑌 ) ) ) |
27 |
23 24 25 26
|
4syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ◡ ( 𝐹 ↾ 𝑌 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑌 ) ) ) |
28 |
8
|
cnrest |
⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ ( 𝐹 “ 𝑌 ) ⊆ ∪ 𝐾 ) → ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑌 ) ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ) |
29 |
23 18 28
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑌 ) ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ) |
30 |
27 29
|
eqeltrd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ) |
31 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
32 |
3 31
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
33 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
34 |
32 33
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
35 |
|
dfdm4 |
⊢ dom ( 𝐹 ↾ 𝑌 ) = ran ◡ ( 𝐹 ↾ 𝑌 ) |
36 |
|
fssres |
⊢ ( ( 𝐹 : 𝑋 ⟶ ∪ 𝐾 ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) : 𝑌 ⟶ ∪ 𝐾 ) |
37 |
16 36
|
sylancom |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) : 𝑌 ⟶ ∪ 𝐾 ) |
38 |
37
|
fdmd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → dom ( 𝐹 ↾ 𝑌 ) = 𝑌 ) |
39 |
35 38
|
eqtr3id |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ran ◡ ( 𝐹 ↾ 𝑌 ) = 𝑌 ) |
40 |
|
eqimss |
⊢ ( ran ◡ ( 𝐹 ↾ 𝑌 ) = 𝑌 → ran ◡ ( 𝐹 ↾ 𝑌 ) ⊆ 𝑌 ) |
41 |
39 40
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ran ◡ ( 𝐹 ↾ 𝑌 ) ⊆ 𝑌 ) |
42 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ⊆ 𝑋 ) |
43 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ran ◡ ( 𝐹 ↾ 𝑌 ) ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋 ) → ( ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ↔ ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn ( 𝐽 ↾t 𝑌 ) ) ) ) |
44 |
34 41 42 43
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ↔ ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn ( 𝐽 ↾t 𝑌 ) ) ) ) |
45 |
30 44
|
mpbid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn ( 𝐽 ↾t 𝑌 ) ) ) |
46 |
|
ishmeo |
⊢ ( ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Homeo ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ↔ ( ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ∧ ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn ( 𝐽 ↾t 𝑌 ) ) ) ) |
47 |
21 45 46
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Homeo ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ) |