Metamath Proof Explorer


Theorem hmop

Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion hmop ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elhmop ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )
2 1 simprbi ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) )
3 2 3ad2ant1 ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) )
4 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( 𝐴 ·ih ( 𝑇𝑦 ) ) )
5 fveq2 ( 𝑥 = 𝐴 → ( 𝑇𝑥 ) = ( 𝑇𝐴 ) )
6 5 oveq1d ( 𝑥 = 𝐴 → ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( ( 𝑇𝐴 ) ·ih 𝑦 ) )
7 4 6 eqeq12d ( 𝑥 = 𝐴 → ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ↔ ( 𝐴 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝐴 ) ·ih 𝑦 ) ) )
8 fveq2 ( 𝑦 = 𝐵 → ( 𝑇𝑦 ) = ( 𝑇𝐵 ) )
9 8 oveq2d ( 𝑦 = 𝐵 → ( 𝐴 ·ih ( 𝑇𝑦 ) ) = ( 𝐴 ·ih ( 𝑇𝐵 ) ) )
10 oveq2 ( 𝑦 = 𝐵 → ( ( 𝑇𝐴 ) ·ih 𝑦 ) = ( ( 𝑇𝐴 ) ·ih 𝐵 ) )
11 9 10 eqeq12d ( 𝑦 = 𝐵 → ( ( 𝐴 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝐴 ) ·ih 𝑦 ) ↔ ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐵 ) ) )
12 7 11 rspc2v ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) → ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐵 ) ) )
13 12 3adant1 ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) → ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐵 ) ) )
14 3 13 mpd ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐵 ) )