Metamath Proof Explorer


Theorem hmopadj

Description: A Hermitian operator is self-adjoint. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopadj ( 𝑇 ∈ HrmOp → ( adj𝑇 ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )
2 hmop ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) )
3 2 eqcomd ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
4 3 3expib ( 𝑇 ∈ HrmOp → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ) )
5 4 ralrimivv ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
6 adjeq ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ) → ( adj𝑇 ) = 𝑇 )
7 1 1 5 6 syl3anc ( 𝑇 ∈ HrmOp → ( adj𝑇 ) = 𝑇 )