Step |
Hyp |
Ref |
Expression |
1 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
2 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
3 |
2
|
eqcomd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
4 |
3
|
3expib |
⊢ ( 𝑇 ∈ HrmOp → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
5 |
4
|
ralrimivv |
⊢ ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
6 |
|
adjeq |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) → ( adjℎ ‘ 𝑇 ) = 𝑇 ) |
7 |
1 1 5 6
|
syl3anc |
⊢ ( 𝑇 ∈ HrmOp → ( adjℎ ‘ 𝑇 ) = 𝑇 ) |