Step |
Hyp |
Ref |
Expression |
1 |
|
hmopadj |
⊢ ( 𝑇 ∈ HrmOp → ( adjℎ ‘ 𝑇 ) = 𝑇 ) |
2 |
|
dmadjop |
⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) |
3 |
2
|
adantr |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) → 𝑇 : ℋ ⟶ ℋ ) |
4 |
|
adj1 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
5 |
4
|
3expb |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
6 |
5
|
adantlr |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
7 |
|
fveq1 |
⊢ ( ( adjℎ ‘ 𝑇 ) = 𝑇 → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
8 |
7
|
oveq1d |
⊢ ( ( adjℎ ‘ 𝑇 ) = 𝑇 → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
10 |
6 9
|
eqtrd |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
11 |
10
|
ralrimivva |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
12 |
|
elhmop |
⊢ ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
13 |
3 11 12
|
sylanbrc |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) = 𝑇 ) → 𝑇 ∈ HrmOp ) |
14 |
13
|
ex |
⊢ ( 𝑇 ∈ dom adjℎ → ( ( adjℎ ‘ 𝑇 ) = 𝑇 → 𝑇 ∈ HrmOp ) ) |
15 |
1 14
|
impbid2 |
⊢ ( 𝑇 ∈ dom adjℎ → ( 𝑇 ∈ HrmOp ↔ ( adjℎ ‘ 𝑇 ) = 𝑇 ) ) |