Metamath Proof Explorer


Theorem hmopbdoptHIL

Description: A Hermitian operator is a bounded linear operator (Hellinger-Toeplitz Theorem). (Contributed by NM, 18-Jan-2008) (New usage is discouraged.)

Ref Expression
Assertion hmopbdoptHIL ( 𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp )

Proof

Step Hyp Ref Expression
1 hmoplin ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp )
2 hmop ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) )
3 2 3expib ( 𝑇 ∈ HrmOp → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )
4 3 ralrimivv ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) )
5 hilhl ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ CHilOLD
6 df-hba ℋ = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
7 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
8 7 hhip ·ih = ( ·𝑖OLD ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
9 eqid ( ⟨ ⟨ + , · ⟩ , norm ⟩ LnOp ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( ⟨ ⟨ + , · ⟩ , norm ⟩ LnOp ⟨ ⟨ + , · ⟩ , norm ⟩ )
10 7 9 hhlnoi LinOp = ( ⟨ ⟨ + , · ⟩ , norm ⟩ LnOp ⟨ ⟨ + , · ⟩ , norm ⟩ )
11 eqid ( ⟨ ⟨ + , · ⟩ , norm ⟩ BLnOp ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( ⟨ ⟨ + , · ⟩ , norm ⟩ BLnOp ⟨ ⟨ + , · ⟩ , norm ⟩ )
12 7 11 hhbloi BndLinOp = ( ⟨ ⟨ + , · ⟩ , norm ⟩ BLnOp ⟨ ⟨ + , · ⟩ , norm ⟩ )
13 6 8 10 12 htth ( ( ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ CHilOLD𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) → 𝑇 ∈ BndLinOp )
14 5 13 mp3an1 ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) → 𝑇 ∈ BndLinOp )
15 1 4 14 syl2anc ( 𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp )