Metamath Proof Explorer


Theorem hmopco

Description: The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopco ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇𝑈 ) = ( 𝑈𝑇 ) ) → ( 𝑇𝑈 ) ∈ HrmOp )

Proof

Step Hyp Ref Expression
1 hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )
2 hmopf ( 𝑈 ∈ HrmOp → 𝑈 : ℋ ⟶ ℋ )
3 fco ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇𝑈 ) : ℋ ⟶ ℋ )
4 1 2 3 syl2an ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇𝑈 ) : ℋ ⟶ ℋ )
5 4 3adant3 ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇𝑈 ) = ( 𝑈𝑇 ) ) → ( 𝑇𝑈 ) : ℋ ⟶ ℋ )
6 fvco3 ( ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑈 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑈𝑦 ) ) )
7 2 6 sylan ( ( 𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑈 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑈𝑦 ) ) )
8 7 oveq2d ( ( 𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( 𝑇𝑈 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑈𝑦 ) ) ) )
9 8 ad2ant2l ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇𝑈 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑈𝑦 ) ) ) )
10 simpll ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑇 ∈ HrmOp )
11 simprl ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℋ )
12 2 ffvelrnda ( ( 𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) → ( 𝑈𝑦 ) ∈ ℋ )
13 12 ad2ant2l ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑈𝑦 ) ∈ ℋ )
14 hmop ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ ( 𝑈𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑈𝑦 ) ) ) = ( ( 𝑇𝑥 ) ·ih ( 𝑈𝑦 ) ) )
15 10 11 13 14 syl3anc ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑈𝑦 ) ) ) = ( ( 𝑇𝑥 ) ·ih ( 𝑈𝑦 ) ) )
16 simplr ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑈 ∈ HrmOp )
17 1 ffvelrnda ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( 𝑇𝑥 ) ∈ ℋ )
18 17 ad2ant2r ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇𝑥 ) ∈ ℋ )
19 simprr ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑦 ∈ ℋ )
20 hmop ( ( 𝑈 ∈ HrmOp ∧ ( 𝑇𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih ( 𝑈𝑦 ) ) = ( ( 𝑈 ‘ ( 𝑇𝑥 ) ) ·ih 𝑦 ) )
21 16 18 19 20 syl3anc ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇𝑥 ) ·ih ( 𝑈𝑦 ) ) = ( ( 𝑈 ‘ ( 𝑇𝑥 ) ) ·ih 𝑦 ) )
22 9 15 21 3eqtrd ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇𝑈 ) ‘ 𝑦 ) ) = ( ( 𝑈 ‘ ( 𝑇𝑥 ) ) ·ih 𝑦 ) )
23 fvco3 ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈𝑇 ) ‘ 𝑥 ) = ( 𝑈 ‘ ( 𝑇𝑥 ) ) )
24 1 23 sylan ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈𝑇 ) ‘ 𝑥 ) = ( 𝑈 ‘ ( 𝑇𝑥 ) ) )
25 24 oveq1d ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑈𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑈 ‘ ( 𝑇𝑥 ) ) ·ih 𝑦 ) )
26 25 ad2ant2r ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑈𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑈 ‘ ( 𝑇𝑥 ) ) ·ih 𝑦 ) )
27 22 26 eqtr4d ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑈𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) )
28 27 3adantl3 ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇𝑈 ) = ( 𝑈𝑇 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑈𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) )
29 fveq1 ( ( 𝑇𝑈 ) = ( 𝑈𝑇 ) → ( ( 𝑇𝑈 ) ‘ 𝑥 ) = ( ( 𝑈𝑇 ) ‘ 𝑥 ) )
30 29 oveq1d ( ( 𝑇𝑈 ) = ( 𝑈𝑇 ) → ( ( ( 𝑇𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑈𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) )
31 30 3ad2ant3 ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇𝑈 ) = ( 𝑈𝑇 ) ) → ( ( ( 𝑇𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑈𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) )
32 31 adantr ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇𝑈 ) = ( 𝑈𝑇 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑇𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑈𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) )
33 28 32 eqtr4d ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇𝑈 ) = ( 𝑈𝑇 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑇𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) )
34 33 ralrimivva ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇𝑈 ) = ( 𝑈𝑇 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( 𝑇𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑇𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) )
35 elhmop ( ( 𝑇𝑈 ) ∈ HrmOp ↔ ( ( 𝑇𝑈 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( 𝑇𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑇𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) ) )
36 5 34 35 sylanbrc ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇𝑈 ) = ( 𝑈𝑇 ) ) → ( 𝑇𝑈 ) ∈ HrmOp )