Step |
Hyp |
Ref |
Expression |
1 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
2 |
|
hmopf |
⊢ ( 𝑈 ∈ HrmOp → 𝑈 : ℋ ⟶ ℋ ) |
3 |
|
fco |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑈 ) = ( 𝑈 ∘ 𝑇 ) ) → ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ) |
6 |
|
fvco3 |
⊢ ( ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑈 ‘ 𝑦 ) ) ) |
7 |
2 6
|
sylan |
⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑈 ‘ 𝑦 ) ) ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑈 ‘ 𝑦 ) ) ) ) |
9 |
8
|
ad2ant2l |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑈 ‘ 𝑦 ) ) ) ) |
10 |
|
simpll |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑇 ∈ HrmOp ) |
11 |
|
simprl |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℋ ) |
12 |
2
|
ffvelrnda |
⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) → ( 𝑈 ‘ 𝑦 ) ∈ ℋ ) |
13 |
12
|
ad2ant2l |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑈 ‘ 𝑦 ) ∈ ℋ ) |
14 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ ( 𝑈 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑈 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑈 ‘ 𝑦 ) ) ) |
15 |
10 11 13 14
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ ( 𝑈 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑈 ‘ 𝑦 ) ) ) |
16 |
|
simplr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑈 ∈ HrmOp ) |
17 |
1
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
18 |
17
|
ad2ant2r |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
19 |
|
simprr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑦 ∈ ℋ ) |
20 |
|
hmop |
⊢ ( ( 𝑈 ∈ HrmOp ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑈 ‘ 𝑦 ) ) = ( ( 𝑈 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
21 |
16 18 19 20
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑈 ‘ 𝑦 ) ) = ( ( 𝑈 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
22 |
9 15 21
|
3eqtrd |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) ) = ( ( 𝑈 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
23 |
|
fvco3 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑈 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
24 |
1 23
|
sylan |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑈 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
25 |
24
|
oveq1d |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑈 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
26 |
25
|
ad2ant2r |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑈 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
27 |
22 26
|
eqtr4d |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
28 |
27
|
3adantl3 |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑈 ) = ( 𝑈 ∘ 𝑇 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
29 |
|
fveq1 |
⊢ ( ( 𝑇 ∘ 𝑈 ) = ( 𝑈 ∘ 𝑇 ) → ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝑇 ∘ 𝑈 ) = ( 𝑈 ∘ 𝑇 ) → ( ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑈 ) = ( 𝑈 ∘ 𝑇 ) ) → ( ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑈 ) = ( 𝑈 ∘ 𝑇 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑈 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
33 |
28 32
|
eqtr4d |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑈 ) = ( 𝑈 ∘ 𝑇 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
34 |
33
|
ralrimivva |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑈 ) = ( 𝑈 ∘ 𝑇 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
35 |
|
elhmop |
⊢ ( ( 𝑇 ∘ 𝑈 ) ∈ HrmOp ↔ ( ( 𝑇 ∘ 𝑈 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑇 ∘ 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
36 |
5 34 35
|
sylanbrc |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑈 ) = ( 𝑈 ∘ 𝑇 ) ) → ( 𝑇 ∘ 𝑈 ) ∈ HrmOp ) |