| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
| 2 |
|
hmopf |
⊢ ( 𝑈 ∈ HrmOp → 𝑈 : ℋ ⟶ ℋ ) |
| 3 |
|
honegsub |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 +op ( - 1 ·op 𝑈 ) ) = ( 𝑇 −op 𝑈 ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 +op ( - 1 ·op 𝑈 ) ) = ( 𝑇 −op 𝑈 ) ) |
| 5 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 6 |
|
hmopm |
⊢ ( ( - 1 ∈ ℝ ∧ 𝑈 ∈ HrmOp ) → ( - 1 ·op 𝑈 ) ∈ HrmOp ) |
| 7 |
5 6
|
mpan |
⊢ ( 𝑈 ∈ HrmOp → ( - 1 ·op 𝑈 ) ∈ HrmOp ) |
| 8 |
|
hmops |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( - 1 ·op 𝑈 ) ∈ HrmOp ) → ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ∈ HrmOp ) |
| 9 |
7 8
|
sylan2 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ∈ HrmOp ) |
| 10 |
4 9
|
eqeltrrd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 −op 𝑈 ) ∈ HrmOp ) |