Description: The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmopex | ⊢ HrmOp ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( ℋ ↑m ℋ ) ∈ V | |
| 2 | hmopf | ⊢ ( 𝑡 ∈ HrmOp → 𝑡 : ℋ ⟶ ℋ ) | |
| 3 | ax-hilex | ⊢ ℋ ∈ V | |
| 4 | 3 3 | elmap | ⊢ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↔ 𝑡 : ℋ ⟶ ℋ ) |
| 5 | 2 4 | sylibr | ⊢ ( 𝑡 ∈ HrmOp → 𝑡 ∈ ( ℋ ↑m ℋ ) ) |
| 6 | 5 | ssriv | ⊢ HrmOp ⊆ ( ℋ ↑m ℋ ) |
| 7 | 1 6 | ssexi | ⊢ HrmOp ∈ V |