Metamath Proof Explorer


Theorem hmopex

Description: The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopex HrmOp ∈ V

Proof

Step Hyp Ref Expression
1 ovex ( ℋ ↑m ℋ ) ∈ V
2 hmopf ( 𝑡 ∈ HrmOp → 𝑡 : ℋ ⟶ ℋ )
3 ax-hilex ℋ ∈ V
4 3 3 elmap ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↔ 𝑡 : ℋ ⟶ ℋ )
5 2 4 sylibr ( 𝑡 ∈ HrmOp → 𝑡 ∈ ( ℋ ↑m ℋ ) )
6 5 ssriv HrmOp ⊆ ( ℋ ↑m ℋ )
7 1 6 ssexi HrmOp ∈ V