Metamath Proof Explorer


Theorem hmopf

Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )

Proof

Step Hyp Ref Expression
1 elhmop ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )
2 1 simplbi ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )