Step |
Hyp |
Ref |
Expression |
1 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
2 |
|
simplll |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑇 ∈ HrmOp ) |
3 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
4 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
5 |
3 4
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
6 |
5
|
adantll |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
7 |
6
|
adantr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
8 |
|
simpr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑤 ∈ ℋ ) |
9 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) ) |
10 |
9
|
eqcomd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
11 |
2 7 8 10
|
syl3anc |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
12 |
|
simprl |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℂ ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑥 ∈ ℂ ) |
14 |
|
simprr |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → 𝑦 ∈ ℋ ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑦 ∈ ℋ ) |
16 |
|
simplr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑧 ∈ ℋ ) |
17 |
1
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
19 |
18
|
adantllr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
20 |
|
hiassdi |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) ) → ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
21 |
13 15 16 19 20
|
syl22anc |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
22 |
1
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
23 |
22
|
adantrl |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
25 |
1
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
27 |
26
|
adantllr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
28 |
|
hiassdi |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ∧ ( ( 𝑇 ‘ 𝑧 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) = ( ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) ) |
29 |
13 24 27 8 28
|
syl22anc |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) = ( ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) ) |
30 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) |
31 |
30
|
eqcomd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) = ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
32 |
31
|
3expa |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) = ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
33 |
32
|
oveq2d |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) = ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
34 |
33
|
adantlrl |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) = ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
35 |
34
|
adantlr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) = ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
36 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) = ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) |
37 |
36
|
eqcomd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) = ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
38 |
37
|
3expa |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) = ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
39 |
38
|
adantllr |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) = ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) |
40 |
35 39
|
oveq12d |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) = ( ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) ) |
41 |
29 40
|
eqtr2d |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 · ( 𝑦 ·ih ( 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( 𝑇 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ) |
42 |
11 21 41
|
3eqtrd |
⊢ ( ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ) |
43 |
42
|
ralrimiva |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ) |
44 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
45 |
5 44
|
sylan2 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
46 |
45
|
anassrs |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
47 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
48 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
49 |
47 48
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
50 |
49
|
an12s |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
52 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
53 |
52
|
adantlr |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
54 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ∈ ℋ ) |
55 |
51 53 54
|
syl2anc |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ∈ ℋ ) |
56 |
|
hial2eq |
⊢ ( ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ∧ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
57 |
46 55 56
|
syl2anc |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
58 |
1 57
|
sylanl1 |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
59 |
43 58
|
mpbid |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
60 |
59
|
ralrimiva |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
61 |
60
|
ralrimivva |
⊢ ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
62 |
|
ellnop |
⊢ ( 𝑇 ∈ LinOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
63 |
1 61 62
|
sylanbrc |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp ) |