Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
3 |
|
homulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
5 |
|
cjre |
⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) |
6 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
7 |
6
|
3expb |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
8 |
5 7
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) ) → ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
9 |
8
|
anassrs |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
10 |
1 2
|
anim12i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ) |
11 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
12 |
11
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
13 |
12
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
15 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝐴 ∈ ℂ ) |
16 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℋ ) |
17 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
18 |
17
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
19 |
|
his5 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
20 |
15 16 18 19
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
21 |
14 20
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
22 |
10 21
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
23 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
24 |
23
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
25 |
24
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
26 |
25
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
27 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
28 |
27
|
ad2ant2lr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
29 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑦 ∈ ℋ ) |
30 |
|
ax-his3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
31 |
15 28 29 30
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
32 |
26 31
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
33 |
10 32
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
34 |
9 22 33
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
35 |
34
|
ralrimivva |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
36 |
|
elhmop |
⊢ ( ( 𝐴 ·op 𝑇 ) ∈ HrmOp ↔ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
37 |
4 35 36
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) |