Step |
Hyp |
Ref |
Expression |
1 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) |
2 |
1
|
3anidm23 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) |
3 |
2
|
eqcomd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
4 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
5 |
4
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
6 |
|
hire |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) |
7 |
5 6
|
sylancom |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) |
8 |
3 7
|
mpbird |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ) |