Metamath Proof Explorer


Theorem hmopre

Description: The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopre ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇𝐴 ) ·ih 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 hmop ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇𝐴 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐴 ) )
2 1 3anidm23 ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇𝐴 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐴 ) )
3 2 eqcomd ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇𝐴 ) ) )
4 hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )
5 4 ffvelrnda ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( 𝑇𝐴 ) ∈ ℋ )
6 hire ( ( ( 𝑇𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑇𝐴 ) ·ih 𝐴 ) ∈ ℝ ↔ ( ( 𝑇𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇𝐴 ) ) ) )
7 5 6 sylancom ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑇𝐴 ) ·ih 𝐴 ) ∈ ℝ ↔ ( ( 𝑇𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇𝐴 ) ) ) )
8 3 7 mpbird ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇𝐴 ) ·ih 𝐴 ) ∈ ℝ )