| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmop | ⊢ ( ( 𝑇  ∈  HrmOp  ∧  𝐴  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝐴  ·ih  ( 𝑇 ‘ 𝐴 ) )  =  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 ) ) | 
						
							| 2 | 1 | 3anidm23 | ⊢ ( ( 𝑇  ∈  HrmOp  ∧  𝐴  ∈   ℋ )  →  ( 𝐴  ·ih  ( 𝑇 ‘ 𝐴 ) )  =  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 ) ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( ( 𝑇  ∈  HrmOp  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  =  ( 𝐴  ·ih  ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 4 |  | hmopf | ⊢ ( 𝑇  ∈  HrmOp  →  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 5 | 4 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  HrmOp  ∧  𝐴  ∈   ℋ )  →  ( 𝑇 ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 6 |  | hire | ⊢ ( ( ( 𝑇 ‘ 𝐴 )  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  ∈  ℝ  ↔  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  =  ( 𝐴  ·ih  ( 𝑇 ‘ 𝐴 ) ) ) ) | 
						
							| 7 | 5 6 | sylancom | ⊢ ( ( 𝑇  ∈  HrmOp  ∧  𝐴  ∈   ℋ )  →  ( ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  ∈  ℝ  ↔  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  =  ( 𝐴  ·ih  ( 𝑇 ‘ 𝐴 ) ) ) ) | 
						
							| 8 | 3 7 | mpbird | ⊢ ( ( 𝑇  ∈  HrmOp  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  ∈  ℝ ) |