Step |
Hyp |
Ref |
Expression |
1 |
|
hmoval.8 |
⊢ 𝐻 = ( HmOp ‘ 𝑈 ) |
2 |
|
hmoval.9 |
⊢ 𝐴 = ( 𝑈 adj 𝑈 ) |
3 |
|
oveq12 |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑢 = 𝑈 ) → ( 𝑢 adj 𝑢 ) = ( 𝑈 adj 𝑈 ) ) |
4 |
3
|
anidms |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 adj 𝑢 ) = ( 𝑈 adj 𝑈 ) ) |
5 |
4 2
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 adj 𝑢 ) = 𝐴 ) |
6 |
5
|
dmeqd |
⊢ ( 𝑢 = 𝑈 → dom ( 𝑢 adj 𝑢 ) = dom 𝐴 ) |
7 |
5
|
fveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = ( 𝐴 ‘ 𝑡 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 ↔ ( 𝐴 ‘ 𝑡 ) = 𝑡 ) ) |
9 |
6 8
|
rabeqbidv |
⊢ ( 𝑢 = 𝑈 → { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } = { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ) |
10 |
|
df-hmo |
⊢ HmOp = ( 𝑢 ∈ NrmCVec ↦ { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } ) |
11 |
|
ovex |
⊢ ( 𝑈 adj 𝑈 ) ∈ V |
12 |
2 11
|
eqeltri |
⊢ 𝐴 ∈ V |
13 |
12
|
dmex |
⊢ dom 𝐴 ∈ V |
14 |
13
|
rabex |
⊢ { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ∈ V |
15 |
9 10 14
|
fvmpt |
⊢ ( 𝑈 ∈ NrmCVec → ( HmOp ‘ 𝑈 ) = { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ) |
16 |
1 15
|
syl5eq |
⊢ ( 𝑈 ∈ NrmCVec → 𝐻 = { 𝑡 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑡 ) = 𝑡 } ) |