Step |
Hyp |
Ref |
Expression |
1 |
|
hmphen |
⊢ ( 𝐽 ≃ { ∅ } → 𝐽 ≈ { ∅ } ) |
2 |
|
df1o2 |
⊢ 1o = { ∅ } |
3 |
1 2
|
breqtrrdi |
⊢ ( 𝐽 ≃ { ∅ } → 𝐽 ≈ 1o ) |
4 |
|
hmphtop1 |
⊢ ( 𝐽 ≃ { ∅ } → 𝐽 ∈ Top ) |
5 |
|
en1top |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ≈ 1o ↔ 𝐽 = { ∅ } ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐽 ≃ { ∅ } → ( 𝐽 ≈ 1o ↔ 𝐽 = { ∅ } ) ) |
7 |
3 6
|
mpbid |
⊢ ( 𝐽 ≃ { ∅ } → 𝐽 = { ∅ } ) |
8 |
|
id |
⊢ ( 𝐽 = { ∅ } → 𝐽 = { ∅ } ) |
9 |
|
sn0top |
⊢ { ∅ } ∈ Top |
10 |
|
hmphref |
⊢ ( { ∅ } ∈ Top → { ∅ } ≃ { ∅ } ) |
11 |
9 10
|
ax-mp |
⊢ { ∅ } ≃ { ∅ } |
12 |
8 11
|
eqbrtrdi |
⊢ ( 𝐽 = { ∅ } → 𝐽 ≃ { ∅ } ) |
13 |
7 12
|
impbii |
⊢ ( 𝐽 ≃ { ∅ } ↔ 𝐽 = { ∅ } ) |