Metamath Proof Explorer


Theorem hmphdis

Description: Homeomorphisms preserve topological discretion. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis hmphdis.1 𝑋 = 𝐽
Assertion hmphdis ( 𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋 )

Proof

Step Hyp Ref Expression
1 hmphdis.1 𝑋 = 𝐽
2 pwuni 𝐽 ⊆ 𝒫 𝐽
3 1 pweqi 𝒫 𝑋 = 𝒫 𝐽
4 2 3 sseqtrri 𝐽 ⊆ 𝒫 𝑋
5 4 a1i ( 𝐽 ≃ 𝒫 𝐴𝐽 ⊆ 𝒫 𝑋 )
6 hmph ( 𝐽 ≃ 𝒫 𝐴 ↔ ( 𝐽 Homeo 𝒫 𝐴 ) ≠ ∅ )
7 n0 ( ( 𝐽 Homeo 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) )
8 elpwi ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
9 imassrn ( 𝑓𝑥 ) ⊆ ran 𝑓
10 unipw 𝒫 𝐴 = 𝐴
11 10 eqcomi 𝐴 = 𝒫 𝐴
12 1 11 hmeof1o ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → 𝑓 : 𝑋1-1-onto𝐴 )
13 f1of ( 𝑓 : 𝑋1-1-onto𝐴𝑓 : 𝑋𝐴 )
14 frn ( 𝑓 : 𝑋𝐴 → ran 𝑓𝐴 )
15 12 13 14 3syl ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → ran 𝑓𝐴 )
16 15 adantr ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥𝑋 ) → ran 𝑓𝐴 )
17 9 16 sstrid ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥𝑋 ) → ( 𝑓𝑥 ) ⊆ 𝐴 )
18 vex 𝑓 ∈ V
19 18 imaex ( 𝑓𝑥 ) ∈ V
20 19 elpw ( ( 𝑓𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝑓𝑥 ) ⊆ 𝐴 )
21 17 20 sylibr ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥𝑋 ) → ( 𝑓𝑥 ) ∈ 𝒫 𝐴 )
22 1 hmeoopn ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥𝑋 ) → ( 𝑥𝐽 ↔ ( 𝑓𝑥 ) ∈ 𝒫 𝐴 ) )
23 21 22 mpbird ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥𝑋 ) → 𝑥𝐽 )
24 23 ex ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → ( 𝑥𝑋𝑥𝐽 ) )
25 8 24 syl5 ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → ( 𝑥 ∈ 𝒫 𝑋𝑥𝐽 ) )
26 25 ssrdv ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → 𝒫 𝑋𝐽 )
27 26 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → 𝒫 𝑋𝐽 )
28 7 27 sylbi ( ( 𝐽 Homeo 𝒫 𝐴 ) ≠ ∅ → 𝒫 𝑋𝐽 )
29 6 28 sylbi ( 𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋𝐽 )
30 5 29 eqssd ( 𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋 )