Step |
Hyp |
Ref |
Expression |
1 |
|
hmphdis.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
pwuni |
⊢ 𝐽 ⊆ 𝒫 ∪ 𝐽 |
3 |
1
|
pweqi |
⊢ 𝒫 𝑋 = 𝒫 ∪ 𝐽 |
4 |
2 3
|
sseqtrri |
⊢ 𝐽 ⊆ 𝒫 𝑋 |
5 |
4
|
a1i |
⊢ ( 𝐽 ≃ 𝒫 𝐴 → 𝐽 ⊆ 𝒫 𝑋 ) |
6 |
|
hmph |
⊢ ( 𝐽 ≃ 𝒫 𝐴 ↔ ( 𝐽 Homeo 𝒫 𝐴 ) ≠ ∅ ) |
7 |
|
n0 |
⊢ ( ( 𝐽 Homeo 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ) |
8 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
9 |
|
imassrn |
⊢ ( 𝑓 “ 𝑥 ) ⊆ ran 𝑓 |
10 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
11 |
10
|
eqcomi |
⊢ 𝐴 = ∪ 𝒫 𝐴 |
12 |
1 11
|
hmeof1o |
⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) |
13 |
|
f1of |
⊢ ( 𝑓 : 𝑋 –1-1-onto→ 𝐴 → 𝑓 : 𝑋 ⟶ 𝐴 ) |
14 |
|
frn |
⊢ ( 𝑓 : 𝑋 ⟶ 𝐴 → ran 𝑓 ⊆ 𝐴 ) |
15 |
12 13 14
|
3syl |
⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → ran 𝑓 ⊆ 𝐴 ) |
16 |
15
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → ran 𝑓 ⊆ 𝐴 ) |
17 |
9 16
|
sstrid |
⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑓 “ 𝑥 ) ⊆ 𝐴 ) |
18 |
|
vex |
⊢ 𝑓 ∈ V |
19 |
18
|
imaex |
⊢ ( 𝑓 “ 𝑥 ) ∈ V |
20 |
19
|
elpw |
⊢ ( ( 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝑓 “ 𝑥 ) ⊆ 𝐴 ) |
21 |
17 20
|
sylibr |
⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) |
22 |
1
|
hmeoopn |
⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐽 ↔ ( 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) ) |
23 |
21 22
|
mpbird |
⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝑥 ∈ 𝐽 ) |
24 |
23
|
ex |
⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → ( 𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐽 ) ) |
25 |
8 24
|
syl5 |
⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ∈ 𝐽 ) ) |
26 |
25
|
ssrdv |
⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → 𝒫 𝑋 ⊆ 𝐽 ) |
27 |
26
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → 𝒫 𝑋 ⊆ 𝐽 ) |
28 |
7 27
|
sylbi |
⊢ ( ( 𝐽 Homeo 𝒫 𝐴 ) ≠ ∅ → 𝒫 𝑋 ⊆ 𝐽 ) |
29 |
6 28
|
sylbi |
⊢ ( 𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋 ⊆ 𝐽 ) |
30 |
5 29
|
eqssd |
⊢ ( 𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋 ) |