Metamath Proof Explorer


Theorem hmphen

Description: Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion hmphen ( 𝐽𝐾𝐽𝐾 )

Proof

Step Hyp Ref Expression
1 hmph ( 𝐽𝐾 ↔ ( 𝐽 Homeo 𝐾 ) ≠ ∅ )
2 n0 ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) )
3 hmeocn ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 ∈ ( 𝐽 Cn 𝐾 ) )
4 cntop1 ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top )
5 3 4 syl ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐽 ∈ Top )
6 cntop2 ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
7 3 6 syl ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 ∈ Top )
8 eqid ( 𝑥𝐽 ↦ ( 𝑓𝑥 ) ) = ( 𝑥𝐽 ↦ ( 𝑓𝑥 ) )
9 8 hmeoimaf1o ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → ( 𝑥𝐽 ↦ ( 𝑓𝑥 ) ) : 𝐽1-1-onto𝐾 )
10 f1oen2g ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ( 𝑥𝐽 ↦ ( 𝑓𝑥 ) ) : 𝐽1-1-onto𝐾 ) → 𝐽𝐾 )
11 5 7 9 10 syl3anc ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐽𝐾 )
12 11 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐽𝐾 )
13 2 12 sylbi ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ → 𝐽𝐾 )
14 1 13 sylbi ( 𝐽𝐾𝐽𝐾 )