Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cmphaushmeo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
cmphaushmeo.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
Assertion | hmphen2 | ⊢ ( 𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmphaushmeo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
2 | cmphaushmeo.2 | ⊢ 𝑌 = ∪ 𝐾 | |
3 | hmph | ⊢ ( 𝐽 ≃ 𝐾 ↔ ( 𝐽 Homeo 𝐾 ) ≠ ∅ ) | |
4 | n0 | ⊢ ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ) | |
5 | 1 2 | hmeof1o | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 : 𝑋 –1-1-onto→ 𝑌 ) |
6 | f1oen3g | ⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝑌 ) → 𝑋 ≈ 𝑌 ) | |
7 | 5 6 | mpdan | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑋 ≈ 𝑌 ) |
8 | 7 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑋 ≈ 𝑌 ) |
9 | 4 8 | sylbi | ⊢ ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ → 𝑋 ≈ 𝑌 ) |
10 | 3 9 | sylbi | ⊢ ( 𝐽 ≃ 𝐾 → 𝑋 ≈ 𝑌 ) |