Metamath Proof Explorer


Theorem hmphen2

Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypotheses cmphaushmeo.1 𝑋 = 𝐽
cmphaushmeo.2 𝑌 = 𝐾
Assertion hmphen2 ( 𝐽𝐾𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 cmphaushmeo.1 𝑋 = 𝐽
2 cmphaushmeo.2 𝑌 = 𝐾
3 hmph ( 𝐽𝐾 ↔ ( 𝐽 Homeo 𝐾 ) ≠ ∅ )
4 n0 ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) )
5 1 2 hmeof1o ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 : 𝑋1-1-onto𝑌 )
6 f1oen3g ( ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑓 : 𝑋1-1-onto𝑌 ) → 𝑋𝑌 )
7 5 6 mpdan ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑋𝑌 )
8 7 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑋𝑌 )
9 4 8 sylbi ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ → 𝑋𝑌 )
10 3 9 sylbi ( 𝐽𝐾𝑋𝑌 )