Step |
Hyp |
Ref |
Expression |
1 |
|
df-hmph |
⊢ ≃ = ( ◡ Homeo “ ( V ∖ 1o ) ) |
2 |
|
cnvimass |
⊢ ( ◡ Homeo “ ( V ∖ 1o ) ) ⊆ dom Homeo |
3 |
|
hmeofn |
⊢ Homeo Fn ( Top × Top ) |
4 |
3
|
fndmi |
⊢ dom Homeo = ( Top × Top ) |
5 |
2 4
|
sseqtri |
⊢ ( ◡ Homeo “ ( V ∖ 1o ) ) ⊆ ( Top × Top ) |
6 |
1 5
|
eqsstri |
⊢ ≃ ⊆ ( Top × Top ) |
7 |
|
relxp |
⊢ Rel ( Top × Top ) |
8 |
|
relss |
⊢ ( ≃ ⊆ ( Top × Top ) → ( Rel ( Top × Top ) → Rel ≃ ) ) |
9 |
6 7 8
|
mp2 |
⊢ Rel ≃ |
10 |
|
hmphsym |
⊢ ( 𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥 ) |
11 |
|
hmphtr |
⊢ ( ( 𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧 ) → 𝑥 ≃ 𝑧 ) |
12 |
|
hmphref |
⊢ ( 𝑥 ∈ Top → 𝑥 ≃ 𝑥 ) |
13 |
|
hmphtop1 |
⊢ ( 𝑥 ≃ 𝑥 → 𝑥 ∈ Top ) |
14 |
12 13
|
impbii |
⊢ ( 𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥 ) |
15 |
9 10 11 14
|
iseri |
⊢ ≃ Er Top |