Metamath Proof Explorer


Theorem hmpher

Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmpher ≃ Er Top

Proof

Step Hyp Ref Expression
1 df-hmph ≃ = ( Homeo “ ( V ∖ 1o ) )
2 cnvimass ( Homeo “ ( V ∖ 1o ) ) ⊆ dom Homeo
3 hmeofn Homeo Fn ( Top × Top )
4 3 fndmi dom Homeo = ( Top × Top )
5 2 4 sseqtri ( Homeo “ ( V ∖ 1o ) ) ⊆ ( Top × Top )
6 1 5 eqsstri ≃ ⊆ ( Top × Top )
7 relxp Rel ( Top × Top )
8 relss ( ≃ ⊆ ( Top × Top ) → ( Rel ( Top × Top ) → Rel ≃ ) )
9 6 7 8 mp2 Rel ≃
10 hmphsym ( 𝑥𝑦𝑦𝑥 )
11 hmphtr ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 )
12 hmphref ( 𝑥 ∈ Top → 𝑥𝑥 )
13 hmphtop1 ( 𝑥𝑥𝑥 ∈ Top )
14 12 13 impbii ( 𝑥 ∈ Top ↔ 𝑥𝑥 )
15 9 10 11 14 iseri ≃ Er Top