| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmphdis.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
dfsn2 |
⊢ { ∅ } = { ∅ , ∅ } |
| 3 |
|
indislem |
⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } |
| 4 |
|
preq2 |
⊢ ( ( I ‘ 𝐴 ) = ∅ → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , ∅ } ) |
| 5 |
4 2
|
eqtr4di |
⊢ ( ( I ‘ 𝐴 ) = ∅ → { ∅ , ( I ‘ 𝐴 ) } = { ∅ } ) |
| 6 |
3 5
|
eqtr3id |
⊢ ( ( I ‘ 𝐴 ) = ∅ → { ∅ , 𝐴 } = { ∅ } ) |
| 7 |
6
|
breq2d |
⊢ ( ( I ‘ 𝐴 ) = ∅ → ( 𝐽 ≃ { ∅ , 𝐴 } ↔ 𝐽 ≃ { ∅ } ) ) |
| 8 |
7
|
biimpac |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → 𝐽 ≃ { ∅ } ) |
| 9 |
|
hmph0 |
⊢ ( 𝐽 ≃ { ∅ } ↔ 𝐽 = { ∅ } ) |
| 10 |
8 9
|
sylib |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → 𝐽 = { ∅ } ) |
| 11 |
10
|
unieqd |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → ∪ 𝐽 = ∪ { ∅ } ) |
| 12 |
|
0ex |
⊢ ∅ ∈ V |
| 13 |
12
|
unisn |
⊢ ∪ { ∅ } = ∅ |
| 14 |
13
|
eqcomi |
⊢ ∅ = ∪ { ∅ } |
| 15 |
11 1 14
|
3eqtr4g |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → 𝑋 = ∅ ) |
| 16 |
15
|
preq2d |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → { ∅ , 𝑋 } = { ∅ , ∅ } ) |
| 17 |
2 10 16
|
3eqtr4a |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) = ∅ ) → 𝐽 = { ∅ , 𝑋 } ) |
| 18 |
|
hmphen |
⊢ ( 𝐽 ≃ { ∅ , 𝐴 } → 𝐽 ≈ { ∅ , 𝐴 } ) |
| 19 |
|
necom |
⊢ ( ( I ‘ 𝐴 ) ≠ ∅ ↔ ∅ ≠ ( I ‘ 𝐴 ) ) |
| 20 |
|
fvex |
⊢ ( I ‘ 𝐴 ) ∈ V |
| 21 |
|
enpr2 |
⊢ ( ( ∅ ∈ V ∧ ( I ‘ 𝐴 ) ∈ V ∧ ∅ ≠ ( I ‘ 𝐴 ) ) → { ∅ , ( I ‘ 𝐴 ) } ≈ 2o ) |
| 22 |
12 20 21
|
mp3an12 |
⊢ ( ∅ ≠ ( I ‘ 𝐴 ) → { ∅ , ( I ‘ 𝐴 ) } ≈ 2o ) |
| 23 |
19 22
|
sylbi |
⊢ ( ( I ‘ 𝐴 ) ≠ ∅ → { ∅ , ( I ‘ 𝐴 ) } ≈ 2o ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → { ∅ , ( I ‘ 𝐴 ) } ≈ 2o ) |
| 25 |
3 24
|
eqbrtrrid |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → { ∅ , 𝐴 } ≈ 2o ) |
| 26 |
|
entr |
⊢ ( ( 𝐽 ≈ { ∅ , 𝐴 } ∧ { ∅ , 𝐴 } ≈ 2o ) → 𝐽 ≈ 2o ) |
| 27 |
18 25 26
|
syl2an2r |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → 𝐽 ≈ 2o ) |
| 28 |
|
hmphtop1 |
⊢ ( 𝐽 ≃ { ∅ , 𝐴 } → 𝐽 ∈ Top ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → 𝐽 ∈ Top ) |
| 30 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 31 |
29 30
|
sylib |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 32 |
|
en2top |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ≈ 2o ↔ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → ( 𝐽 ≈ 2o ↔ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) ) |
| 34 |
27 33
|
mpbid |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) |
| 35 |
34
|
simpld |
⊢ ( ( 𝐽 ≃ { ∅ , 𝐴 } ∧ ( I ‘ 𝐴 ) ≠ ∅ ) → 𝐽 = { ∅ , 𝑋 } ) |
| 36 |
17 35
|
pm2.61dane |
⊢ ( 𝐽 ≃ { ∅ , 𝐴 } → 𝐽 = { ∅ , 𝑋 } ) |