Metamath Proof Explorer


Theorem hmphref

Description: "Is homeomorphic to" is reflexive. (Contributed by FL, 25-Feb-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmphref ( 𝐽 ∈ Top → 𝐽𝐽 )

Proof

Step Hyp Ref Expression
1 toptopon2 ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
2 idhmeo ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) → ( I ↾ 𝐽 ) ∈ ( 𝐽 Homeo 𝐽 ) )
3 1 2 sylbi ( 𝐽 ∈ Top → ( I ↾ 𝐽 ) ∈ ( 𝐽 Homeo 𝐽 ) )
4 hmphi ( ( I ↾ 𝐽 ) ∈ ( 𝐽 Homeo 𝐽 ) → 𝐽𝐽 )
5 3 4 syl ( 𝐽 ∈ Top → 𝐽𝐽 )