Metamath Proof Explorer


Theorem hmphsym

Description: "Is homeomorphic to" is symmetric. (Contributed by FL, 8-Mar-2007) (Proof shortened by Mario Carneiro, 30-May-2014)

Ref Expression
Assertion hmphsym ( 𝐽𝐾𝐾𝐽 )

Proof

Step Hyp Ref Expression
1 hmph ( 𝐽𝐾 ↔ ( 𝐽 Homeo 𝐾 ) ≠ ∅ )
2 n0 ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) )
3 1 2 bitri ( 𝐽𝐾 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) )
4 hmeocnv ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) )
5 hmphi ( 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) → 𝐾𝐽 )
6 4 5 syl ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾𝐽 )
7 6 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾𝐽 )
8 3 7 sylbi ( 𝐽𝐾𝐾𝐽 )