Metamath Proof Explorer


Theorem hne0

Description: Hilbert space has a nonzero vector iff it is not trivial. (Contributed by NM, 24-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion hne0 ( ℋ ≠ 0 ↔ ∃ 𝑥 ∈ ℋ 𝑥 ≠ 0 )

Proof

Step Hyp Ref Expression
1 helch ℋ ∈ C
2 1 chne0i ( ℋ ≠ 0 ↔ ∃ 𝑥 ∈ ℋ 𝑥 ≠ 0 )