Step |
Hyp |
Ref |
Expression |
1 |
|
ho0.1 |
⊢ 𝑇 : ℋ ⟶ ℋ |
2 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) |
3 |
1 2
|
ax-mp |
⊢ 𝑇 Fn ℋ |
4 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
5 |
4
|
elexi |
⊢ 0ℎ ∈ V |
6 |
5
|
fconst |
⊢ ( ℋ × { 0ℎ } ) : ℋ ⟶ { 0ℎ } |
7 |
|
ffn |
⊢ ( ( ℋ × { 0ℎ } ) : ℋ ⟶ { 0ℎ } → ( ℋ × { 0ℎ } ) Fn ℋ ) |
8 |
6 7
|
ax-mp |
⊢ ( ℋ × { 0ℎ } ) Fn ℋ |
9 |
|
eqfnfv |
⊢ ( ( 𝑇 Fn ℋ ∧ ( ℋ × { 0ℎ } ) Fn ℋ ) → ( 𝑇 = ( ℋ × { 0ℎ } ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( ( ℋ × { 0ℎ } ) ‘ 𝑥 ) ) ) |
10 |
3 8 9
|
mp2an |
⊢ ( 𝑇 = ( ℋ × { 0ℎ } ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( ( ℋ × { 0ℎ } ) ‘ 𝑥 ) ) |
11 |
|
df0op2 |
⊢ 0hop = ( ℋ × 0ℋ ) |
12 |
|
df-ch0 |
⊢ 0ℋ = { 0ℎ } |
13 |
12
|
xpeq2i |
⊢ ( ℋ × 0ℋ ) = ( ℋ × { 0ℎ } ) |
14 |
11 13
|
eqtri |
⊢ 0hop = ( ℋ × { 0ℎ } ) |
15 |
14
|
eqeq2i |
⊢ ( 𝑇 = 0hop ↔ 𝑇 = ( ℋ × { 0ℎ } ) ) |
16 |
1
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
17 |
|
hial0 |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = 0 ↔ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) |
18 |
16 17
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = 0 ↔ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) |
19 |
5
|
fvconst2 |
⊢ ( 𝑥 ∈ ℋ → ( ( ℋ × { 0ℎ } ) ‘ 𝑥 ) = 0ℎ ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) = ( ( ℋ × { 0ℎ } ) ‘ 𝑥 ) ↔ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) |
21 |
18 20
|
bitr4d |
⊢ ( 𝑥 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = 0 ↔ ( 𝑇 ‘ 𝑥 ) = ( ( ℋ × { 0ℎ } ) ‘ 𝑥 ) ) ) |
22 |
21
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = 0 ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( ( ℋ × { 0ℎ } ) ‘ 𝑥 ) ) |
23 |
10 15 22
|
3bitr4ri |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = 0 ↔ 𝑇 = 0hop ) |