Step |
Hyp |
Ref |
Expression |
1 |
|
ho0.1 |
⊢ 𝑇 : ℋ ⟶ ℋ |
2 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ) |
3 |
1
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
4 |
|
hial02 |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ( 𝑇 ‘ 𝑦 ) = 0ℎ ) ) |
5 |
|
hial0 |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ↔ ( 𝑇 ‘ 𝑦 ) = 0ℎ ) ) |
6 |
4 5
|
bitr4d |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ) ) |
7 |
3 6
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ) ) |
8 |
7
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ) |
9 |
1
|
ho01i |
⊢ ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ↔ 𝑇 = 0hop ) |
10 |
2 8 9
|
3bitri |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ 𝑇 = 0hop ) |