| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ho0.1 |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 2 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ) |
| 3 |
1
|
ffvelcdmi |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 4 |
|
hial02 |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ( 𝑇 ‘ 𝑦 ) = 0ℎ ) ) |
| 5 |
|
hial0 |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ↔ ( 𝑇 ‘ 𝑦 ) = 0ℎ ) ) |
| 6 |
4 5
|
bitr4d |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ) ) |
| 7 |
3 6
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ) ) |
| 8 |
7
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ) |
| 9 |
1
|
ho01i |
⊢ ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = 0 ↔ 𝑇 = 0hop ) |
| 10 |
2 8 9
|
3bitri |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = 0 ↔ 𝑇 = 0hop ) |